A. | -3 | B. | -7 | C. | -6 | D. | -8 |
分析 由已知不等式組畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最小值.
解答 解:已知不等式組表示的可行域如圖:由z=-3x-y變形為y=-3x-z,
當(dāng)此直線經(jīng)過圖中的C時,在y軸的截距最大,z最小,由$\left\{\begin{array}{l}{x-y-1=0}\\{2x+y-5=0}\end{array}\right.$得到C(2,1),
所以z的最小值為-3×2-1=-7;
故選B.
點評 本題考查了簡單線性規(guī)劃問題;由已知畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最值.體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k≤-3或-1≤k≤1或k≥3 | B. | 不存在這樣的實數(shù)k | ||
C. | -2<k<2 | D. | -3<k<-1或1<k<3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{2}}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1] | B. | (0,1) | C. | (-∞,1] | D. | [0,+∞] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com