【題目】對(duì)于定義在上的函數(shù),有下列四個(gè)命題:
①若是奇函數(shù),則的圖象關(guān)于點(diǎn)對(duì)稱;
②若對(duì),有,則的圖象關(guān)于直線對(duì)稱;
③若對(duì),有,則的圖象關(guān)于點(diǎn)對(duì)稱;
④函數(shù)與函數(shù)的圖像關(guān)于直線對(duì)稱.
其中正確命題的序號(hào)為__________.(把你認(rèn)為正確命題的序號(hào)都填上)
【答案】①③
【解析】
根據(jù)奇函數(shù)的對(duì)稱性,結(jié)合函數(shù)圖象的平移變換判斷①;根據(jù)函數(shù)是周期為2的周期函數(shù),的圖象對(duì)稱性不確定,判斷②;根據(jù)任意點(diǎn)關(guān)于的對(duì)稱點(diǎn)仍在數(shù)圖象上判斷③;根據(jù)函數(shù)與函數(shù)的圖象關(guān)于軸對(duì)稱判斷④.
①是奇函數(shù),的圖象關(guān)于原點(diǎn)成中心對(duì)稱,而的圖象是將的圖象向右平移一個(gè)單位,的圖象關(guān)于點(diǎn)對(duì)稱,故①正確;
②對(duì),有,可得函數(shù)是周期為2的周期函數(shù),的圖象對(duì)稱性不確定,即②錯(cuò)誤;
③若對(duì),有,可得函數(shù)圖象上任意點(diǎn)關(guān)于的對(duì)稱點(diǎn)仍在數(shù)圖象上,所以的圖象關(guān)于點(diǎn)對(duì)稱,③正確;
④函數(shù)是由的圖象向左平移一個(gè)單位得到;函數(shù)的圖象是由的圖象向右平移一個(gè)單位得,而與的圖象關(guān)于軸對(duì)稱,所以函數(shù)與函數(shù)的圖象關(guān)于軸對(duì)稱,④錯(cuò)誤.
所以正確命題的序號(hào)為①③,故答案為①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),( )
(1)若,求曲線在處的切線方程.
(2)對(duì)任意,總存在,使得(其中為的導(dǎo)數(shù))成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是以AB為直徑的圓O上異于A,B的點(diǎn),平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F(xiàn) 分別是PC,PB的中點(diǎn),記平面AEF與平面ABC的交線為直線l.
(Ⅰ)求證:直線l⊥平面PAC;
(Ⅱ)直線l上是否存在點(diǎn)Q,使直線PQ分別與平面AEF、直線EF所成的角互余?若存在,求出|AQ|的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,點(diǎn)的坐標(biāo)為.
(1)求過(guò)點(diǎn)且與圓相切的直線方程;
(2)過(guò)點(diǎn)任作一條直線與圓交于不同兩點(diǎn),,且圓交軸正半軸于點(diǎn),求證:直線與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左右焦點(diǎn)分別為, ,左頂點(diǎn)為,上頂點(diǎn)為, 的面積為.
(1)求橢圓的方程;
(2)設(shè)直線: 與橢圓相交于不同的兩點(diǎn), , 是線段的中點(diǎn).若經(jīng)過(guò)點(diǎn)的直線與直線垂直于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《城市規(guī)劃管理意見(jiàn)》里面提出“新建住宅要推廣街區(qū)制,原則上不再建設(shè)封閉住宅小區(qū),已建成的封閉小區(qū)和單位大院要逐步打開(kāi)”,這個(gè)消息在網(wǎng)上一石激起千層浪,各種說(shuō)法不一而足.某網(wǎng)站為了解居民對(duì)“開(kāi)放小區(qū)”認(rèn)同與否,從歲的人群中隨機(jī)抽取了人進(jìn)行問(wèn)卷調(diào)查,并且做出了各個(gè)年齡段的頻率分布直方圖(部分)如圖所示,同時(shí)對(duì)人對(duì)這“開(kāi)放小區(qū)”認(rèn)同情況進(jìn)行統(tǒng)計(jì)得到下表:
(Ⅰ)完成所給的頻率分布直方圖,并求的值;
(Ⅱ)如果從兩個(gè)年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽取6人參與座談會(huì),然后從這6人中隨機(jī)抽取2人作進(jìn)一步調(diào)查,求這2人的年齡都在內(nèi)的概率 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的奇數(shù)項(xiàng)成等差數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列,且公差和公比都是2,若對(duì)滿足m+n≤5的任意正整數(shù)m,n,均有am+an=am+n成立. (I)求數(shù)列{an}的通項(xiàng)公式;
(II)若bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn). (Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與面SAB所成的角為θ,求sinθ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=x2-2x.
(1)寫(xiě)出函數(shù)y=f(x)的解析式
(2)若方程f(x)=a恰有3個(gè)不同的解,求a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com