6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{\frac{1}{x},x>0}\end{array}\right.$的圖象上存在不同的兩點 A,B,使得曲線y=f(x)在這兩點處的切線重合,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{4}$,1)B.(2,+∞)C.$({-∞,-2})∪({\frac{1}{4},+∞})$D.$({-∞,\frac{1}{4}})$

分析 先根據(jù)導(dǎo)數(shù)的幾何意義寫出函數(shù)f(x)在點A、B處的切線方程,再利用兩直線重合的充要條件:斜率相等且縱截距相等,列出關(guān)系式,從而得出a=$\frac{1}{4}$($\frac{1}{{{x}_{2}}^{2}}$+1)2,令t=$\frac{1}{{{x}_{2}}^{2}}$,則0<t<1,即可得出a的取值范圍.

解答 解:當x<0時,f(x)=x2+x+a的導(dǎo)數(shù)為f′(x)=2x+1;
當x>0時,f(x)=$\frac{1}{x}$的導(dǎo)數(shù)為f′(x)=-$\frac{1}{{x}^{2}}$,
設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的兩點,且x1<x2,
當x1<x2<0,或0<x1<x2時,f′(x1)≠f′(x2),故x1<0<x2,
當x1<0時,函數(shù)f(x)在點A(x1,f(x1))處的切線方程為:
y-(x12+x1+a)=(2x1+1)(x-x1);
當x2>0時,函數(shù)f(x)在點B(x2,f(x2))處的切線方程為y+$\frac{1}{{x}_{2}}$=-$\frac{1}{{{x}_{2}}^{2}}$(x-x2).
兩直線重合的充要條件是-$\frac{1}{{{x}_{2}}^{2}}$=2x1+1①,0=-x12+a②,
由①及x1<0<x2得0<$\frac{1}{{x}_{2}}$<1,由①②得a=$\frac{1}{4}$($\frac{1}{{{x}_{2}}^{2}}$+1)2
令t=$\frac{1}{{{x}_{2}}^{2}}$,則0<t<1,且a=$\frac{1}{4}$(t+1)2,
在(0,1)為增函數(shù),
∴$\frac{1}{4}$<a<1,
故選:A.

點評 本題主要考查了導(dǎo)數(shù)的幾何意義等基礎(chǔ)知識,考查了推理論證能力、運算能力、創(chuàng)新意識,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=$\sqrt{lo{g}_{5}(1-2sinx)}$,(-$\frac{π}{2}$≤x≤$\frac{π}{2}$)的定義域是(  )
A.[-$\frac{π}{2}$,0]B.[-$\frac{π}{2}$,$\frac{π}{6}$)C.[-$\frac{π}{2}$,0)D.[-$\frac{π}{2}$,$\frac{π}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=ax-b(a>0且a≠1)的圖象如圖1所示,則函數(shù)y=cosax+b的圖象可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點P($\sqrt{2}$,1)和橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
(1)設(shè)橢圓的兩個焦點分別為F1,F(xiàn)2,試求△PF1F2的周長及橢圓的離心率;
(2)若直線l:$\sqrt{2}$x-2y+m=0(m≠0)與橢圓C交于兩個不同的點A,B,設(shè)直線PA與PB的斜率分別為k1,k2,求證:k1+k2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)和g(x)都是奇函數(shù),且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值5,則F(x)在(-∞,0)上( 。
A.有最小值-5B.有最大值-5C.有最小值-1D.有最大值-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若tanα=3tan$\frac{π}{5}$,則$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.從1到9這9個數(shù)字中取出不同的5個數(shù)字進行排列,問:奇數(shù)的位置上是奇數(shù)的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x$-\frac{1}{2}$.
(1)求f(x)的最小值,并寫出取得最小值時的自變量x的集合.
(2)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)拋物線E:y2=2px(p>0)上的點M(x0,4)到焦點F的距離|MF|=$\frac{5}{4}$x0
(Ⅰ)求拋物線E的方程;
(Ⅱ)如圖,直線l:y=k(x+2)與拋物線E交于A,B兩點,點A關(guān)于x軸的對稱點是C,求證:直線BC恒過一定點.

查看答案和解析>>

同步練習(xí)冊答案