已知向量m=(sinA,  
1
2
)
n=(3,  sinA+
3
cosA)
共線,其中A是△ABC的內(nèi)角.
(1)求角A的大小;
(2)若BC=2,求△ABC面積S的最大值,并判斷S取得最大值時(shí)△ABC的形狀.
分析:(1)根據(jù)向量平行得出角2A的等式,然后根據(jù)兩角和差的正弦公式和A為三角形內(nèi)角這個(gè)條件得到A.
(2)根據(jù)余弦定理代入三角形的面積公式,判斷等號(hào)成立的條件.
解答:解:(1)因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
m
n
,所以sinA•(sinA+
3
cosA)-
3
2
=0
;
所以
1-cos2A
2
+
3
2
sin2A-
3
2
=0
,
3
2
sin2A-
1
2
cos2A=1
,
sin(2A-
π
6
)=1

因?yàn)锳∈(0,π),所以2A-
π
6
∈(-
π
6
,  
11π
6
)

2A-
π
6
=
π
2
,A=
π
3

(2)由余弦定理,得4=b2+c2-bc.
S△ABC=
1
2
bcsinA=
3
4
bc

而b2+c2≥2bc?bc+4≥2bc?bc≤4,(當(dāng)且僅當(dāng)b=c時(shí)等號(hào)成立)
所以S△ABC=
1
2
bcsinA=
3
4
bc≤
3
4
×4=
3
;
當(dāng)△ABC的面積取最大值時(shí),b=c.又A=
π
3
;
故此時(shí)△ABC為等邊三角形.
點(diǎn)評(píng):本題為三角函數(shù)公式的應(yīng)用題目,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2
)
,若
m
n
,則sin2θ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sinωx,cosωx),
n
=(cosωx,cosωx)(ω>0)
,設(shè)函數(shù)f(x)=
m
n
且f(x)的最小正周期為π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)先將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,然后將圖象向下平移
1
2
個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間上[0,
4
]
上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2
)
,當(dāng)θ∈[0,π]時(shí),函數(shù)f(θ)=
m
n
的值域是
[-1,2]
[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海二模)已知向量
m
=(sin(2x+
π
6
),sinx)
,
n
=(1,sinx),f(x)=
m
n

(1)求函數(shù)y=f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若f(
B
2
)=
2
+1
2
,b=
5
,c=
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知向量
m
=(sin 
A
2
,cos 
A
2
)
,
n
=(cos 
A
2
,-cos 
A
2
)
,且2
m
n
+|
m
|=
2
2
,
AB
AC
=1

(1)求角A的大小
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案