在極坐標(biāo)系中,點(diǎn)P(2,-
π
3
)到直線l:ρsin(θ-
π
6
)=1的距離是
 
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:由極坐標(biāo)化為直角坐標(biāo),再利用點(diǎn)到直線的距離公式即可得出.
解答: 解:點(diǎn)P(2,-
π
3
)化為P(2cos(-
π
3
),2sin(-
π
3
))
,即P(1,-
3
)

直線l:ρsin(θ-
π
6
)=1化為:
3
2
ρsinθ-
1
2
ρcosθ
=1,x-
3
y+2=0.
∴點(diǎn)P(2,-
π
3
)到直線l:ρsin(θ-
π
6
)=1的距離=
|1+3+2|
1+(
3
)2
=3.
故答案為:3.
點(diǎn)評:本題考查了極坐標(biāo)化為直角坐標(biāo)、點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若雙曲線:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線與直線l:
x
c
-
y
b
=1(其中c為雙曲線的半焦距)分別交于A、B兩點(diǎn),已知線段AB中點(diǎn)的橫坐標(biāo)為-c,則雙曲線的離心率為( 。
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球的表面積為16π,則該球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,則下列不等式中不恒成立的是(  )
A、
ab
2ab
a+b
B、(a+b)(
1
a
+
1
b
)≥4
C、
|a-b|
a
-
b
D、a2+b2+1≥2a+2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在邊長為1的正方形ABCD中,以A為圓心,AB為半徑作扇形ABD,在該正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下有關(guān)線性回歸分析的說法不正確的是( 。
A、在回歸線方程
y
=0.4x+12中,當(dāng)自變量x每增加一個單位時,變量
y
平均增加約為0.4個單位
B、用最二乘法求回歸直線方程,是尋求使
x
n+1
(y1-bx-a)2最小的a,b的值
C、相關(guān)系數(shù)為r,若r2越接近1,則表明回歸線的效果越好
D、相關(guān)系數(shù)r越小,表明兩個變量相關(guān)性越弱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場經(jīng)營一批進(jìn)價是每件30元的商品,在市場銷售中發(fā)現(xiàn)此商品的銷售單價x元(30≤x≤50)與日銷售量y件之間有如下關(guān)系:
銷售單價x(元)30404550
日銷售量y(件)6030150
(Ⅰ)經(jīng)對上述數(shù)據(jù)研究發(fā)現(xiàn),銷售單價x與日銷售量y滿足函數(shù)關(guān)系y=kx+b,試求k,b的值;
(Ⅱ)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)(Ⅰ)關(guān)系式,寫出P關(guān)于x的函數(shù)關(guān)系式,并求出銷售單價x為多少元時,才能獲得最大日銷售利潤,最大日銷售利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:(x+1)(x-3)≤0,命題q:-m≤x≤1+m(m>0)
(Ⅰ)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若m=5,“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>0,c>d>0,則一定有( 。
A、
a
c
b
d
B、
a
c
b
d
C、
a
d
b
c
D、
a
d
b
c

查看答案和解析>>

同步練習(xí)冊答案