某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關于的函數(shù)關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求關于的函數(shù)關系式,并求出為何值時,取得最大值?
(1)(2) ,
解析試題分析:(1) 解決應用題問題首先要解決閱讀問題,具體說就是要會用數(shù)學式子正確表示數(shù)量關系,本題解題思路清晰,就是根據(jù)扇環(huán)面的周長列函數(shù)關系式,因為扇環(huán)面的周長為兩段弧長加兩段直線,利用弧長公式,得所以 ,(2) 本題解題思路清晰,就是根據(jù)花壇的面積與裝飾總費用的比列函數(shù)關系式,再由導數(shù)或基本不等式求最值. 裝飾總費用為直線部分的裝飾費用與弧線部分的裝飾費用之和,而花壇的面積為大扇形面積與小扇形面積之差,求最值時要注意定義域范圍的限制.
試題解析:(1)設扇環(huán)的圓心角為q,則,所以, 4分
(2) 花壇的面積為. 7分
裝飾總費用為, 9分
所以花壇的面積與裝飾總費用的, 12分
令,則,當且僅當t=18時取等號,此時.
答:當時,花壇的面積與裝飾總費用的比最大. 15分
考點:函數(shù)關系式,弧長公式,基本不等式求最值
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對任意x>0,f(x)≤t恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為加快旅游業(yè)的發(fā)展,新余市2013年面向國內(nèi)發(fā)行總量為200萬張的“仙女湖之旅”優(yōu)惠卡,向省外人士發(fā)行的是金卡,向省內(nèi)人士發(fā)行的是銀卡.某旅游公司組織了一個有36名游客的旅游團到新余仙女湖旅游,其中是省外游客,其余是省內(nèi)游客.在省外游客中有持金卡,在省內(nèi)游客中有持銀卡.(1)在該團中隨機采訪2名游客,求恰有1人持銀卡的概率;
(2)在該團中隨機采訪2名游客,求其中持金卡與持銀卡人數(shù)相等概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某公司欲建連成片的網(wǎng)球場數(shù)座,用288萬元購買土地20000平方米,每座球場的建筑面積為1000平方米,球場每平方米的平均建筑費用與所建的球場數(shù)有關,當該球場建n座時,每平方米的平均建筑費用表示,且(其中),又知建5座球場時,每平方米的平均建筑費用為400元.
(1)為了使該球場每平方米的綜合費用最。ňC合費用是建筑費用與購地費用之和),公司應建幾座網(wǎng)球場?
(2)若球場每平方米的綜合費用不超過820元,最多建幾座網(wǎng)球場?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
近日,國家經(jīng)貿(mào)委發(fā)出了關于深入開展增產(chǎn)節(jié)約運動,大力增產(chǎn)市場適銷對路產(chǎn)品的通知,并發(fā)布了當前國內(nèi)市場185種適銷工業(yè)品和42種滯銷產(chǎn)品的參考目錄。為此,一公司舉行某產(chǎn)品的促銷活動,經(jīng)測算該產(chǎn)品的銷售量P萬件(生產(chǎn)量與銷售量相等)與促銷費用x萬元滿足(其中,a為正常數(shù));已知生產(chǎn)該產(chǎn)品還需投入成本(10+2P)萬元(不含促銷費用),產(chǎn)品的銷售價格定為萬元/萬件.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤是大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
有一塊邊長為4米的正方形鋼板,現(xiàn)對其進行切割,焊接成一個長方體無蓋容器(切、焊損耗忽略不計),有人用數(shù)學知識作了如下設計:在鋼板的四個角處各切去一個小正方形,剩余部分圍成長方體。
(Ⅰ)求這種切割、焊接而成的長方體的最大容積.
(Ⅱ)請問:能重新設計,使所得長方體的容器的容積嗎?若能、給出你的一種設計方案。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對任意x>0,f(x)≤t恒成立,求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com