11.已知數(shù)列{an}前n項(xiàng)和為${S_n}={n^2}-2n+a$,若該數(shù)列是等差數(shù)列,則a=( 。
A.-1B.0C.1D.不確定

分析 Sn=n2-2n+a,可得a1=a-1,a2=1,a3=3,由于該數(shù)列是等差數(shù)列,即可得出a.

解答 解:∵Sn=n2-2n+a,
∴a1=a-1,a1+a2=a,a1+a2+a3=3+a,
解得:a1=a-1,a2=1,a3=3,
∵該數(shù)列是等差數(shù)列,
∴2×1=3+a-1,解得a=0.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其性質(zhì)、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線y=k(x-1)+1與圓C:x2-4x+y2+1=0交于A,B兩點(diǎn),則|AB|的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a>b,c>d則下列不等式中一定成立的是( 。
A.a+c>b+dB.ac>bdC.a-c>b-dD.a+d>b+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,P、Q是拋物線上的兩點(diǎn),若△FPQ是邊長(zhǎng)為2的正三角形,則p的值是( 。
A.$2±\sqrt{3}$B.$2+\sqrt{3}$C.$\sqrt{3}±1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-1|-|x+2|.
(Ⅰ)求不等式-2<f(x)<0的解集A;
(Ⅱ)若m,n∈A,證明:|1-4mn|>2|m-n|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{3}$,且對(duì)任意m,n∈N*,am+n=am•an,若Sn<a恒成立,則a的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某單位有500位職工,其中35歲以下的有125人,35~49歲的有280人,50歲以上的有95人,為了了解職工的健康狀態(tài),采用分層抽樣的方法抽取一個(gè)容量為100的樣本,需抽取50歲以上職工人數(shù)為19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.現(xiàn)要完成下列3項(xiàng)抽樣調(diào)查:
①?gòu)?0盒酸奶中抽取3盒進(jìn)行食品衛(wèi)生檢查.
②科技報(bào)告廳有32排,每排有40個(gè)座位,有一次報(bào)告會(huì)恰好坐滿了聽眾,報(bào)告會(huì)結(jié)束后,為了聽取意見,
需要請(qǐng)32名聽眾進(jìn)行座談.
③高新中學(xué)共有160名教職工,其中一般教師120名,行政人員16名,后勤人員24名,為了了解教職工對(duì)學(xué)校在
校務(wù)公開方面的意見,擬抽取一個(gè)容量為20的樣本.
較為合理的抽樣方法是( 。
A.①簡(jiǎn)單隨機(jī)抽樣,②系統(tǒng)抽樣,③分層抽樣
B.①簡(jiǎn)單隨機(jī)抽樣,②分層抽樣,③系統(tǒng)抽樣
C.①系統(tǒng)抽樣,②簡(jiǎn)單隨機(jī)抽樣,③分層抽樣
D.①分層抽樣,②系統(tǒng)抽樣,③簡(jiǎn)單隨機(jī)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在區(qū)間[-4,4]上隨機(jī)地取一個(gè)數(shù)a,則事件“對(duì)任意的正實(shí)數(shù)x,使x2-ax+1≥0成立”發(fā)生的概率為( 。
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案