6.函數(shù)f(x)=x3-3x的單調(diào)遞減區(qū)間為( 。
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,+∞)

分析 求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:f′(x)=3x2-3=3(x+1)(x-1),
令f′(x)<0,即(x+1)(x-1)<0,
解得:-1<x<1,
故f(x)在(-1,1)遞減,
故選:C.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知$\frac{{{a^2}+2a+2}}{x}≤$$\frac{4}{{{x^2}-x}}+1$對于任意的x∈(1,+∞)恒成立,則( 。
A.a的最小值為-3B.a的最小值為-4C.a的最大值為2D.a的最大值為4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知點A(0,-1)是拋物線C:x2=2py(p>0)準線上的一點,點F是拋物線C的焦點,點P在拋物線C上且滿足|PF|=m|PA|,當m取最小值時,點P恰好在以原點為中心,F(xiàn)為焦點的雙曲線上,則此雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$+1D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.命題甲:f(x)在區(qū)間(a,b)內(nèi)遞增;命題乙:對任意x∈(a,b),有f'(x)>0.則甲是乙的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某地有居民100000戶,其中普通家庭99000戶,高收入家庭1000戶,從普通家庭中以簡單隨機抽樣方式抽取990戶,從高收入家庭中以簡單隨機抽樣方式抽取100戶進行調(diào)查,發(fā)現(xiàn)共有120戶家庭擁有3套或3套以上住房,其中普通家庭40戶,高收入家庭80戶,依據(jù)這些數(shù)據(jù)并結(jié)合所掌握的統(tǒng)計知識,你認為該地擁有3套或3套以上住房的家庭所占比例的合理估計是4.8%.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.原命題:“設(shè)a,b,c∈R,若a>b,則ac2>bc2”,在原命題以及它的逆命題、否命題、逆否命題中,真命題的個數(shù)為(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.直線y=x+1被曲線$y=\frac{1}{2}{x^2}-1$截得的線段AB的長為$2\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.甲、乙兩個同學下棋,若甲獲勝的概率0.3,甲、乙下成和棋的概率為0.4,則乙贏的概率為0.3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=|sinx|•cosx,則下列說法正確的是(  )
A.f(x)的圖象關(guān)于直線x=$\frac{π}{2}$對稱B.f(x)在區(qū)間上[$\frac{π}{4}$,$\frac{3π}{4}$]單調(diào)遞減
C.若|f(x1)|=|f(x2)|,則x1=x2+2kπ(k∈Z)D.f(x)的周期為π

查看答案和解析>>

同步練習冊答案