20.直線x-y+m=0與圓x2+y2=1相交的一個(gè)充分不必要條件是(  )
A.0<m<1B.-4<m<2C.m<1D.-3<m<1

分析 把直線與圓的方程聯(lián)立,消去y得到一個(gè)關(guān)于x的一元二次方程,根據(jù)直線與圓有兩個(gè)不同的交點(diǎn)得到此方程有兩個(gè)不等的實(shí)根,即△>0,列出關(guān)于m的不等式,求出不等式的解集得到m的范圍,在四個(gè)選項(xiàng)中找出解集的一個(gè)真子集即為滿足題意的充分不必要條件.

解答 解:聯(lián)立直線與圓的方程,消去y得:2x2+2mx+m2-1=0,
由題意得:△=(2m)2-8(m2-1)=-4m2+8>0,
解得:-$\sqrt{2}$<m<$\sqrt{2}$,
∵0<m<1是-$\sqrt{2}$<m<$\sqrt{2}$的一個(gè)真子集,
∴直線x-y+m=0與圓x2+y2=1相交的一個(gè)充分不必要條件是0<m<1.
故選A.

點(diǎn)評(píng) 此題考查了直線與圓相交的性質(zhì),以及充分必要條件的判斷,要求學(xué)生利用方程的思想解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.多面體ABCDEF中,AF⊥平面ABCD,DE⊥平面ABCD,AF=2,AB=AD=$\sqrt{3}$,BC=DC=1,∠BAD=60°,且B、C、E、F四點(diǎn)共面.
(1)求線段DE的長(zhǎng)度;
(2)求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,點(diǎn)M是棱CC1的中點(diǎn).
(1)在棱AB上是否存在一點(diǎn)N,使MN∥平面AB1C1?若存在,請(qǐng)確定點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由;
(2)當(dāng)△ABC是等邊三角形,且AC=CC1=2時(shí),求點(diǎn)M到平面AB1C1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=sin(π-ωx)cosωx+cos2ωx(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,$\frac{π}{16}}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x•|x|-2x
(Ⅰ)求函數(shù)f(x)=0時(shí)x的值;
(Ⅱ)畫出y=f(x)的圖象,并結(jié)合圖象寫出f(x)=m有三個(gè)不同實(shí)根時(shí),實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.觀察等式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,…,由以上等式推測(cè)到一個(gè)一般的結(jié)論,對(duì)于n∈N*,13+23+33+…+n3=${[\frac{n(n+1)}{2}]^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(n)=$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{{n}^{2}}$,則(  )
A.當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$;f(k+1)比f(wàn)(k)多了1項(xiàng)
B.當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$;f(k+1)比f(wàn)(k)多了2k+1項(xiàng)
C.當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$;f(k+1)比f(wàn)(k)多了k項(xiàng)
D.當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$;f(k+1)比f(wàn)(k)多了2k項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)函數(shù)f(x)=ex(sin x-cos x)(0<x<2π),則函數(shù)f(x)的極大值為eπ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,三棱錐S-ABC中,SA⊥平面ABC,AB=6,BC=12,AC=6$\sqrt{5}$.SB=6$\sqrt{2}$,則三棱錐S-ABC外接球的表面積為216π.

查看答案和解析>>

同步練習(xí)冊(cè)答案