10.正方體ABCD-A1B1C1D1的棱長為6,點(diǎn)O在BC上,且BO=OC,過點(diǎn)O的直線l與直線AA1,C1D1分別交于M,N兩點(diǎn),則MN與面ADD1A1所成角的正弦值為( 。
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

分析 設(shè)MD1交AD于E,根據(jù)C1D1∥平面ABCD可得C1D1∥OE,從而E為AD的中點(diǎn),故可計(jì)算出MD1和ND1,從而可求出sin∠NMD1

解答 解:∵C1D1⊥平面ADD1A1,
∴∠NMD1是MN與面ADD1A1所成角,
設(shè)MD1與AD交點(diǎn)為E,連結(jié)OE,
∵C1D1∥平面ABCD,C1D1?平面MND1,平面MND1∩平面ABCD=DE,
∴C1D1∥OE,
∵O是BC的中點(diǎn),∴E是AD的中點(diǎn),
∴E是MD1的中點(diǎn),MD1=2ED1=6$\sqrt{5}$,
∴ND1=2OE=12,∴MN=$\sqrt{1{2}^{2}+(6\sqrt{5})^{2}}$=18,
∴sin∠NMD1=$\frac{N{D}_{1}}{MN}$=$\frac{2}{3}$.
故選A.

點(diǎn)評 本題考查了線面平行的性質(zhì),線面角的計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線l1:3x+4y-3=0,直線l2:6x+8y-1=0(b∈R)平行,則它們之間的距離為( 。
A.2B.$\frac{1}{5}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=sinxcos({x+\frac{π}{6}})$.
(I)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,若f(C)=$\frac{1}{4}$,a=2,且△ABC的面積為$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$\overrightarrow a,\overrightarrow b$都是非零向量,下列四個(gè)條件,使$\frac{\overrightarrow a}{|\overrightarrow a|}=\frac{\overrightarrow b}{|\overrightarrow b|}$成立的充要條件是(  )
A.$\overrightarrow a=\overrightarrow b$B.$\overrightarrow a=2\overrightarrow b$C.$\overrightarrow a∥\overrightarrow b$且$|\overrightarrow a|=|\overrightarrow b|$D.$\overrightarrow a∥\overrightarrow b$且方向相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=mlnx+\frac{n}{x}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x-1.
(1)求實(shí)數(shù)m,n的值;
(2)若b>a>1,$A=f(\frac{a+b}{2})$,$B=\frac{bf(b)-af(a)}{b-a}-1$,試判斷A,B兩者是否有確定的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,∠B=$\frac{π}{3}$,D為邊BC上的點(diǎn),E為AD上的點(diǎn),且AE=8,AC=4$\sqrt{10}$,∠CED=$\frac{π}{4}$.
(1)求CE的長
(2)若CD=5,求cos∠DAB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=3,$AD=2\sqrt{2}$,∠ABC=45°,P點(diǎn)在底面ABCD內(nèi)的射影E在線段AB上,且PE=2,BE=2EA,M在線段CD上,且$CM=\frac{2}{3}CD$. 
(Ⅰ)證明:CE⊥平面PAB;
(Ⅱ)在線段AD上確定一點(diǎn)F,使得平面PMF⊥平面PAB,并求三棱錐P-AFM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y=2x,0≤x≤10},則集合A∩B=( 。
A.{1,2}B.{x|0≤x≤1}C.{(1,2)}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,設(shè)正方形的邊長為a,則該三棱錐的表面積為( 。
A.a2B.$\sqrt{3}{a^2}$C.$\frac{{\sqrt{3}}}{6}{a^2}$D.$2\sqrt{3}{a^2}$

查看答案和解析>>

同步練習(xí)冊答案