2.設(shè)全集I=R,集合A={y|y=log3x,x>3},B={x|y=$\sqrt{x-1}$},則( 。
A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁IB)≠∅

分析 根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性便可解出A={x|x>1},利用被開方數(shù)大于等于0,求出B,從而找出正確選項(xiàng).

解答 解:A={y|y=log3x,x>3}={y|y>1},B={x|y=$\sqrt{x-1}$}={x|x≥1},
∴A⊆B,
故選:A.

點(diǎn)評(píng) 考查對(duì)數(shù)函數(shù)的單調(diào)性,考查包含關(guān)系,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=sinxcosx將 f(x)的圖象向右平移$\frac{φ}{2}$(0<φ<π) 個(gè)單位,得到y(tǒng)=g(x)圖象且g(x)的一條對(duì)稱軸是直線x=$\frac{π}{8}$.
(1)求φ;
(2)求函數(shù)y=g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)y=f′(x),y=g′(x)的導(dǎo)函數(shù)的圖象如右圖所示,那么y=f(x),y=g(x)的圖象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$+$\overrightarrow{2b}$)∥$\overrightarrow{c}$,則k=( 。
A.-8B.2C.-$\frac{1}{2}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)α∈($\frac{π}{2}$,π),函數(shù)f(x)=(sinα)${\;}^{{x}^{2}-2x+3}$的最大值為$\frac{1}{4}$,則α=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.為了促進(jìn)人口的均衡發(fā)展,我國(guó)從2016年1月1日起,全國(guó)統(tǒng)一實(shí)施全面放開二孩政策.為了解適齡民眾對(duì)放開生育二孩政策的態(tài)度,某部門選取70后和80后年齡段的人作為調(diào)查對(duì)象,進(jìn)行了問卷調(diào)查.其中,持“支持生二孩”“不支持生二孩”和“保留意見”態(tài)度的人數(shù)如下表所示:
支持生二孩不支持生二孩保留意見
80后380200420
70后120300180
(1)根據(jù)統(tǒng)計(jì)表計(jì)算并說明,能否有99.9%的把握認(rèn)為“支持生二孩”與“不支持生二孩”與年齡段有關(guān)?
(2)在統(tǒng)計(jì)表中持“不支持生二孩”態(tài)度的人中,用分層抽樣的方法抽取5人,并將其看成一個(gè)總體,從這5人中任意選取2人,求至少有1個(gè)80后的概率.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)為(0,+∞)上的增函數(shù),若f(a2-a)>f(a+3),則實(shí)數(shù)a的取值范圍為-3<a<-1或a>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A(x1,y1),B(x2,y2)是拋物線x2=4y上不相同的兩個(gè)點(diǎn),l是弦AB的垂直平分線.
(1)當(dāng)x1+x2取何值時(shí),可使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等?證明你的結(jié)論.
(2)當(dāng)直線l的斜率為1時(shí),求l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ln[(5+k)x2+6x+k+5],若f(x)在(-∞,-1]上為減函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案