(本題滿分16分)

       由部分自然數(shù)構(gòu)成如圖的數(shù)表,用表示第行第個(gè)數(shù)(),

使,每行中的其余各數(shù)分別等于其“肩膀”上的兩個(gè)數(shù)的之和。設(shè)第

行中各數(shù)之和為。

   (1)求;

   (2)用表示;

   (3)試問:數(shù)列中是否存在不同的三項(xiàng),)恰好成等差數(shù)列?若存在,求出,,的關(guān)系;若不存在,請(qǐng)說明理由。

(本題滿分16分)

   (1) 2分

   (2)

      

      

       =;   6分

   (3)∵,∴      8分

       所以是以為首項(xiàng),2為公比的等比數(shù)列,       9分

       則     11分

       若數(shù)列中存在不同的三項(xiàng)恰好成等差數(shù)列,

       不妨設(shè),顯然是遞增數(shù)列,則       12分

       即2,化簡得:

       ……(*)     14分

       由于,且,知≥1,≥2,

       所以(*)式左邊為偶數(shù),右邊為奇數(shù),

       故數(shù)列中不存在不同的三項(xiàng)恰好成等差數(shù)列。     16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題滿分16分)兩個(gè)數(shù)列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù),、是常數(shù),且),對(duì)定義域內(nèi)任意、),恒有成立.

(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,

 .(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數(shù)

(1)判斷并證明上的單調(diào)性;

(2)若存在,使,則稱為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案