已知雙曲線
x2
3
-
y2
9
=1
,則雙曲線右支上的點(diǎn)P到右焦點(diǎn)的距離與點(diǎn)x2到右準(zhǔn)線的距離之比等于
2
2
分析:雙曲線右支上的點(diǎn)p到右焦點(diǎn)的距離與點(diǎn)p到右準(zhǔn)線的距離之比等于離心率,故可求.
解答:解:由題意,a=
3
,b=3,c=2
3

雙曲線右支上的點(diǎn)p到右焦點(diǎn)的距離與點(diǎn)p到右準(zhǔn)線的距離之比=e=
c
a
=2
,
故答案為:2.
點(diǎn)評(píng):本題以雙曲線為載體,考查雙曲線的第二定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線方程是y=
3
x
,它的一個(gè)焦點(diǎn)在拋物線y2=8x的準(zhǔn)線上,則雙曲線的方程為( 。
A、x2-
y2
3
=1
B、
x2
3
-y2=1
C、
x2
4
-
y2
12
=1
D、
x2
12
-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的漸近線為y=±
3
3
x
,且過(guò)點(diǎn)(
3
,0)
,則雙曲線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
3
-y2=1,若直線y=kx+m(k,m≠0)與雙曲線C交于不同的兩點(diǎn)M,N,且M,N在以點(diǎn)A(0,-1)為圓心的圓上,則實(shí)數(shù)m的取值范圍是
(-
1
4
,0)∪(4,+∞)
(-
1
4
,0)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線中心在原點(diǎn)且一個(gè)焦點(diǎn)為F(
7
,0),直線y=x-1與其相交于M、N兩點(diǎn),MN中點(diǎn)的橫坐標(biāo)為-
2
3
,則此雙曲線的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•紅橋區(qū)一模)已知雙曲線C:
x2
3
-y2=1
,F(xiàn)是右焦點(diǎn),過(guò)F作雙曲線C在第一、三象限的漸近線的垂線,垂足為P,過(guò)點(diǎn)P作x軸的垂線,垂足為A.
(Ⅰ)求
PA
OP
;
(Ⅱ)若直線y=kx+m(m≠0)與雙曲線C交于 M、N兩點(diǎn),點(diǎn)B(0,-1),且|MB|=|NB|,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案