【題目】已知曲線,,則下面結論正確的是(

A.上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

B.上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

C.上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

D.上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

【答案】C

【解析】

結合三角函數(shù)圖象的伸縮變換、平移變換的規(guī)律,并結合三角函數(shù)誘導公式,可選出答案.

由題意,把上各點的橫坐標縮短到原來的倍,縱坐標不變,得到,再把得到的曲線向左平移個單位長度,得到,

,所以選項C正確.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是半正多面體(圖1.半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價(元)

4

6

7

8

10

銷量(件)

60

50

45

30

20

(1) 請根據(jù)上表提供的數(shù)據(jù)畫出散點圖,并判斷是正相關還是負相關;

(2) 求出關于的回歸直線方程,若單價為9元時,預測其銷量為多少?

(參考公式:回歸直線方程中公式 ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表數(shù)據(jù)為某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:)及對應銷售價格y(單位:千元/)

x

1

2

3

4

5

y

70

65

55

38

22

1)若yx有較強的線性相關關系,根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程.

2)若該農(nóng)產(chǎn)品每噸的成本為13.1千元,假設該農(nóng)產(chǎn)品可全部賣出,利用上問所求的回歸方程,預測當年產(chǎn)量為多少噸時,年利潤Z最大?

(參考公式:回歸直線方程為,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面,,底面是直角梯形,.

(Ⅰ)求證:平面平面;

(Ⅱ)在棱上是否存在一點,使//平面?若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角中,,,點在線段.

(Ⅰ) ,求的長;

)若點在線段上,且,問:當取何值時,的面積最?并求出面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過橢圓的右焦點,拋物線的焦點為橢圓的上頂點,且交橢圓兩點,點在直線上的射影依次為.

(1)求橢圓的方程;

(2)若直線軸于點,且,當變化時,證明: 為定值;

(3)當變化時,直線是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是邊長為的菱形, , 平面, 平面 .

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案