函數(shù)f(x)=
x+b1+x2
是定義在(-1,1)上的奇函數(shù).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)用單調(diào)性定義證明函數(shù)f(x)在(0,1)上是增函數(shù).
分析:(I)已知函數(shù)f(x)=
x+b
1+x2
是定義在(-1,1)上的奇函數(shù),根據(jù)奇函數(shù)的定義f(-x)=-f(x),求出b的值,從而求出函數(shù)f(x)的解析式;
(II)可以 設(shè)0<x1<x2<1,根據(jù)定義法判斷f(x2)-f(x1)與0的大小關(guān)系,從而進行證明;
解答:解:( I)∵函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),f(-x)=-f(x)…(2分)
-x+b
1+x2
=-
x+b
1+x2
,
所以b=0,…(4分)
所以 f(x)=
x
1+x2
.…(5分)
( II) 設(shè)0<x1<x2<1,△x=x2-x1>0,…(6分)
則△y=f(x2)-f(x1)=
x2
1+
x
2
2
-
x1
1+
x
2
1
=
x2-x1+x2
x
2
1
-x1
x
2
2
(1+
x
2
1
)(1+
x
2
2
)
=
(x2-x1)(1-x1x2)
(1+
x
2
1
)(1+
x
2
2
)
=
△x(1-x1x2)
(1+
x
2
1
)(1+
x
2
2
)
…(8分)
∵0<x1<x2<1,
∴△x=x2-x1>0,1-x1x2>0…(10分)
∴而 1+
x
2
1
>0,1+
x
2
2
>0
,
∴△y=f(x2)-f(x1)>0…(11分)
∴f(x)在(0,1)上是增函數(shù).…(12分)
點評:此題主要考查奇函數(shù)的性質(zhì)及其應(yīng)用,利用定義法求證函數(shù)的單調(diào)性,解題的關(guān)鍵是會化簡,此題是一道基礎(chǔ)題;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)=x+
4
x
-3,x∈(0,4)
,當(dāng)且僅當(dāng)x=a時,f(x)取得最小值b,則函數(shù)g(x)=(
1
a
)|x-b|
的圖象為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案