9.設(shè)集合M={0,1,3},N={x|x2-3x+2≤0},則M∩N=(  )
A.{1}B.{2}C.{0,1}D.{1,2}

分析 先分另求出集合M和N,由此能求出M∩N.

解答 解:∵M={0,1,3},
N={x|x2-3x+2≤0}={x|1≤x≤2},
∴M∩N={1}.
故選:A.

點評 本題考查交集的求法,是基礎(chǔ)題,解題時要認真審題,注意交集定義的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow$=(1,3),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$-$\overrightarrow{c}$)⊥$\overrightarrow$,則k=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-m|(m>0),g(x)=2f(x)-f(x+m),g(x)的最小值為-1.
(Ⅰ)求m的值;
(Ⅱ)若|a|<m,|b|<m,且a≠0.求證:f(ab)>|a|f($\frac{a}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-(m-2)x-2m
(1)當m=4且x∈[2,3]時,求函數(shù)f(x)的值域;
(2)若m∈[1,3]時,f(x)≤0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.(1)${(\frac{2}{3})^0}+{2^{-2}}×{(\frac{16}{9})^{\frac{1}{2}}}+(lg8+lg125)$;
(2)已知a+a-1=5,求a2+a-2和${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程與圓${(x+\sqrt{3})}^{2}+{(y+1)}^{2}=1$相切,則此雙曲線的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)$f(x)=f'(2){x^3}+\frac{1}{x}$,則f(2)=(  )
A.$-\frac{1}{4}$B.$\frac{1}{44}$C.$\frac{15}{22}$D.$\frac{1}{14}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+1)為奇函數(shù).若f(2)=1,則f(1)+f(2)+f(3)+…+f(2015)=( 。
A.1B.2014C.0D.-2014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知直線:x-y+m=0與圓C:x2+y2=4相交于A,B兩點,且弦AB的長為2$\sqrt{3}$,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案