【題目】在極坐標(biāo)系下,方程的圖形為如圖所示的“幸運(yùn)四葉草”,又稱為玫瑰線.
(1)當(dāng)玫瑰線的時,求以極點為圓心的單位圓與玫瑰線的交點的極坐標(biāo);
(2)求曲線上的點M與玫瑰線上的點N距離的最小值及取得最小值時的點M、N的極坐標(biāo)(不必寫詳細(xì)解題過程).
【答案】(1)和;(2)最小值為,M,N的極坐標(biāo)分別為,
【解析】
(1)把與聯(lián)立,解方程組即得以極點為圓心的單位圓與玫瑰線的交點的極坐標(biāo);(2)曲線的直角坐標(biāo)方程為再利用數(shù)形結(jié)合求出點M、N的極坐標(biāo).
(1)以極點為圓心的單位圓為與聯(lián)立,得,
所以,因為,所以或,
從而得到以極點為圓心的單位圓與玫瑰線的交點的極坐標(biāo)為和.
(2)曲線的直角坐標(biāo)方程為.
玫瑰線極徑的最大值為2,且在點取得,
連接O,與垂直且交于點,
所以點M與點N的距離的最小值為,
此時對應(yīng)的點M,N的極坐標(biāo)分別為,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若為整數(shù),函數(shù)恰好有兩個零點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程是(為參數(shù)),曲線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線,的參數(shù)方程化為普通方程;
(Ⅱ)求曲線上的點到曲線的距離的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B為函數(shù)圖象上相異兩點,且A,B的橫坐標(biāo)之積為常數(shù),若在A,B兩點處的切線存在交點,則稱這個交點為函數(shù)的“點”。
(1)求函數(shù)的“點”的縱坐標(biāo)的取值范圍;
(2)判斷函數(shù)的點”在哪個象限,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:.
(1)若直線經(jīng)過拋物線的焦點,求拋物線的準(zhǔn)線方程;
(2)若斜率為-1的直線經(jīng)過拋物線的焦點,且與拋物線交于,兩點,當(dāng)時,求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生參加體育活動的情況,學(xué)校對學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,其中一個問題是“你平均每天參加體育活動的時間是多少?”,共有4個選項:A,1.5小時以上,B,1-1.5小時,C,0.5-1小時,D,0.5小時以下.圖(1),(2)是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)本次一共調(diào)查了多少名學(xué)生.
(2)在圖(1)中將對應(yīng)的部分補(bǔ)充完整.
(3)若該校有3000名學(xué)生,你估計全校有多少名學(xué)生平均每天參加體育活動的時間在0.5小時以下?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為,過且斜率為的直線與交于,兩點,.
(1)求的方程;
(2)求過點,且與的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校進(jìn)行社會實踐,對歲的人群隨機(jī)抽取 1000 人進(jìn)行了一次是否開通“微博”的調(diào)查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時尚族”人數(shù)分別占本組人數(shù)的、.
(1)求歲與歲年齡段“時尚族”的人數(shù);
(2)從歲和歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時尚達(dá)人大賽,其中兩人作為領(lǐng)隊.求領(lǐng)隊的兩人年齡都在歲內(nèi)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某山區(qū)小學(xué)有名四年級學(xué)生,將全體四年級學(xué)生隨機(jī)按編號,并且按編號順序平均分成組.現(xiàn)要從中抽取名學(xué)生,各組內(nèi)抽取的編號按依次增加進(jìn)行系統(tǒng)抽樣.
(1)若抽出的一個號碼為,據(jù)此寫出所有被抽出學(xué)生的號碼;
(2)分別統(tǒng)計這名學(xué)生的數(shù)學(xué)成績,獲得成績數(shù)據(jù)的莖葉圖如圖所示,求該樣本的方差.
(注:,方差)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com