在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且(2a-c)cosB=bcosC.
(1)求B;
(2)設(shè)b=2
3
,a+c=6
,求△ABC的面積.
分析:(Ⅰ)通過(guò)正弦定理以及三角形的內(nèi)角和化簡(jiǎn)已知等式,求出cosB的值,即可求解.
(Ⅱ)通過(guò)已知條件,利用余弦定理求出ac的值,然后求解三角形的面積.
解答:解:(Ⅰ)由正弦定理得:(2a-c)cosB=bcosC⇒(2sinA-sinC)cosB=sinBcosC…(2分)
即:2sinAcosB=sinCcosB+cosCsinB=sin(B+C)=sinA…(4分)
在△ABC中,0<A<π∴sinA≠0∴cosB=
1
2
,又0<B<π
,∴B=
π
3
.               …(6分)
(Ⅱ)因?yàn)?span id="0xibfsb" class="MathJye">b=2
3
,a+c=6,
由余弦定理得:12=a2+c2-2accos60°=(a+c)2-3ac…..(8分)
則ac=8…..(10分)
S△ABC=
1
2
acsinB=
1
2
•8•
3
2
=2
3
.                     …..(12分)
點(diǎn)評(píng):本題考查正弦定理與余弦定理的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長(zhǎng)為20cm,求此三角形的各邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過(guò)如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍.
(1)求f(x)的周期和對(duì)稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案