(本小題共12分)某中學(xué)的高二(1)班男同學(xué)有名,女同學(xué)有名,老師按照分層抽樣的方法組建了一個人的課外興趣小組.
(Ⅰ)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(Ⅱ)經(jīng)過一個月的學(xué)習(xí)、討論,這個興趣小組決定選出兩名同學(xué)做某項實驗,方法是先從小組里選出名同學(xué)做實驗,該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實驗,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

甲、乙、丙三人分別獨立地解一道題,甲做對的概率是,三人都做對的概率是,三人全做錯的概率是,已知乙做對這道題的概率大于丙做對這道題的概率.設(shè)三人中做對這道題的人數(shù)為,則隨機變量的數(shù)學(xué)期望     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)集合,,分別從集合中隨機取一個數(shù).
(1)若向量,求向量的夾角為銳角的概率;
(2) 記點,則點落在直線上為事件,
求使事件的概率最大的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

袋中裝有13個紅球和個白球,這些紅球和白球除了顏色不同之外,其余都相同,從袋中同時取兩個球.
(1)若取出的是2個紅球的概率等于取出的是一紅一白兩個球的概率的3倍,試求的值;
(2) 某公司的某部門有21位職員,公司將進行抽獎活動,在(1)的條件下,規(guī)定:每個職員都從袋中同時取兩個球,然后放回袋中,搖勻再給別人抽獎,若某人取出的兩個球是一紅一白時,則中獎(獎金1000元);否則,不中獎(也發(fā)鼓勵獎金100元).試求此公司在這次抽獎活動中所發(fā)獎金總額的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.將編號為1,2,3的三個小球隨意放入編號為1,2,3的三個紙箱中,每個紙箱內(nèi)有且只有一個小球,稱此為一輪“放球”,設(shè)一輪“放球”后編號為i(i=1,2,3)的紙箱放入的小球編號為ai,定義吻合度誤差為=|1-a1|+|2-a2|+|3-a3|。假設(shè)a1,a2,a3等可能地為1、2、3的各種排列,求⑴某人一輪“放球”滿足=2時的概率。⑵的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某汽車駕駛學(xué)校在學(xué)員學(xué)習(xí)完畢后,對學(xué)員的駕駛技術(shù)進行9選3考試(即共9項測試,隨機選取3項)考核,若全部過關(guān),則頒發(fā)結(jié)業(yè)證;若不合格,則參加下期考核,直至合格為止,若學(xué)員小李抽到“移庫”一項,則第一次合格的概率為,第二次合格的概率為,第三次合格的概率為,若第四次抽到可要求調(diào)換項目,其它選項小李均可一次性通過。
(1)求小李第一次考試即通過的概率;
(2)求小李參加考核的次數(shù)的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

2011年3月20日,第19個世界水日,主題是:“城市水資源管理”;2011年“六·五”世界環(huán)境日中國主題:“共建生態(tài)文明,共享綠色未來”.活動組織者為調(diào)查市民對活動主題的了解情況,隨機對10~60歲的人群抽查了人,調(diào)查的每個人都同時回答了兩個問題,統(tǒng)計結(jié)果如下:

(Ⅰ)若以表中的頻率近似看作各年齡段回答活動主題正確的概率,規(guī)定回答正確世界環(huán)境日中國主題的得20元獎勵,回答正確世界水日主題的得30元獎勵.組織者隨機請一個家庭中的兩名成員(大人42歲,孩子16歲)回答這兩個主題,兩個主題能否回答正確均無影響,分別寫出這個家庭兩個成員獲得獎勵的分布列并求該家庭獲得獎勵的期望;
(Ⅱ)求該家庭獲得獎勵為50元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
甲,乙,丙三個同學(xué)同時報名參加某重點高校2012年自主招生.高考前自主招生的程序為審核材料和文化測試,只有審核過關(guān)后才能參加文化測試,文化測試合格者即可獲得自主招生入選資格.因為甲,乙,丙三人各有優(yōu)勢,甲,乙,丙三人審核過關(guān)的概率分別為0.5,0.6,0.4,審核過關(guān)后,甲,乙,丙三人文化測試合格的概率分別為0.6,0.5,0.75.
(1)求甲,乙,丙三人中只有一人通過審核的概率;
(2)設(shè)甲,乙,丙三人中獲得自主招生入選資格的人數(shù)為,求隨機變量的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

查看答案和解析>>

同步練習(xí)冊答案