5.已知函數(shù)f(x)=a${\;}^{{x}^{2}-2x}$(a>0,且a≠1),x∈[0,$\frac{3}{2}$]的最大值比最小值大2a,則a=$\frac{1}{2}$.

分析 根據(jù)復(fù)合函數(shù)的單調(diào)性,分類討論,即可求出a的值.

解答 解:函數(shù)f(x)=a${\;}^{{x}^{2}-2x}$(a>0,且a≠1),x∈[0,$\frac{3}{2}$],
當(dāng)a>1時(shí),函數(shù)f(x)在[0,1]為減函數(shù),在[1,$\frac{3}{2}$]為增函數(shù),
∴f(x)min=f(1)=$\frac{1}{a}$,f(x)max=f(0)=1,
∴1-$\frac{1}{a}$=2a,
即2a2-a+1=0,此方程無解,
當(dāng)0<a<1時(shí),函數(shù)f(x)在[0,1]為增函數(shù),在[1,$\frac{3}{2}$]為減函數(shù),
∴f(x)max=f(1)=$\frac{1}{a}$,f(x)min=f(0)=1,
∴$\frac{1}{a}$-1=2a,
即2a2+a-1=0,
解得a=$\frac{1}{2}$或a=-1(舍去),
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)的單調(diào)性和函數(shù)的最值的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,線段D1B1上有兩個(gè)動(dòng)點(diǎn)E、F,且EF=1,則下列結(jié)論中錯(cuò)誤的是( 。
A.AC⊥BEB.AA1∥平面BEF
C.三棱錐A-BEF的體積為定值D.△AEF的面積和△BEF的面積相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(diǎn)P為雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1右支上一點(diǎn),F(xiàn)1、F2分別為雙曲線的左右焦點(diǎn),M為△F1F2P的內(nèi)心,若S△F1MP=S△F2MP+4,則△F1F2M的面積為(  )
A.5B.6C.2$\sqrt{7}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在銳角△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、,若C=45°,b=4$\sqrt{5}$,sinB=$\frac{2\sqrt{5}}{5}$.
(1)求c的值;
(2)求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.Sn為數(shù)列的前n項(xiàng)和,已知an>0,an2+2an=4Sn-1.
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某公司過去五個(gè)月的廣告費(fèi)支出x與銷售額y(單位:萬元)之間有下列對(duì)應(yīng)數(shù)據(jù):
x24568
y40605070
工作人員不慎將表格中y的第一個(gè)數(shù)據(jù)丟失.已知y對(duì)x呈線性相關(guān)關(guān)系,且回歸方程為$\widehaty$=6.5x+17.5,則下列說法:
①銷售額y與廣告費(fèi)支出x正相關(guān);
②丟失的數(shù)據(jù)(表中處)為30;
③該公司廣告費(fèi)支出每增加1萬元,銷售額一定增加6.5萬元;
④若該公司下月廣告投入8萬元,則銷售額為70萬元.
其中,正確說法有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}中,a1=1,an=an-1+3(n≥2,n∈N*),數(shù)列{bn}滿足bn=$\frac{1}{a_na_{n+1}}$,n∈N*,則$\underset{lim}{n→∞}$(b1+b2+…+bn)$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知定點(diǎn)A(0,-5),P是圓(x-2)2+(y+3)2=2上的動(dòng)點(diǎn),則當(dāng)|PA|取到最大值時(shí),P點(diǎn)的坐標(biāo)為(3,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的關(guān)系:廠里的固定成本為2.8萬元,每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬元,每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬元)(總成本=固定成本+生產(chǎn)成本).如果銷售收入R(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x,0≤x≤5}\\{11,x>5}\end{array}\right.$,且該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),請(qǐng)完成下列問題:
(1)寫出利潤(rùn)函數(shù)y=f(x)的解析式(利潤(rùn)=銷售收入-總成本);
(2)甲廠生產(chǎn)多少臺(tái)新產(chǎn)品時(shí),可使盈利最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案