【題目】某產(chǎn)品每件成本元,售價元,每星期賣出件.如果降低價格,銷售量可以增加,即:若商品降低(單位:元,),則一個星期多賣的商品為件.已知商品單件降低元時,一星期多賣出件.(商品銷售利潤=商品銷售收入-商品銷售成本)

(1)將一個星期的商品銷售利潤表示成的函數(shù);

(2)如何定價才能使一個星期的商品銷售利潤最大.

【答案】(1);(2)18

【解析】分析:(1)若商品降低元,則一個星期多賣的商品為件,可得,解得,利用價格與銷售產(chǎn)品數(shù)量之積減去成本可得一個星期的商品銷售利潤;(2)對求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的極值,與區(qū)間端點函數(shù)值比較即可的結(jié)果.

詳解 (1)若商品降低元,則一個星期多賣的商品為件.

由已知條件,得,解得.

因為一個星期的商品銷售利潤為,則:

.-

(2) 根據(jù)(1),有

,解得:,當(dāng)變化時,的變化情況如下表:

∴當(dāng)時,取得極大值;當(dāng)時,取得極小值

,

∴當(dāng)時,

所以,定價為(元),能使一個星期的商品銷售利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)的定義域為R,對任意,有>-1,且f(1)=1,下列命題正確的是( 。

A. 是單調(diào)遞減函數(shù)

B. 是單調(diào)遞增函數(shù)

C. 不等式的解集為

D. 不等式的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).

1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

2)根據(jù)這300樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為: .估計該校學(xué)生每周平均體育運動時間超過4小時的概率;

3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為該校學(xué)生的每周平均體育運動時間與性別有關(guān)


0.10

0.05

0.010

0.005


2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣lnx,g(x)=x2﹣ax.
(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)﹣f(x),A(x1 , h(x1)),B(x2 , h(x2))(x1≠x2)是函數(shù)h(x)圖象上任意兩點,且滿足 >1,求實數(shù)a的取值范圍;
(3)若x∈(0,1],使f(x)≥ 成立,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的方程為y2=2px(p>0),點R(1,2)在拋物線C上.
(1)求拋物線C的方程;
(2)過點Q(1,1)作直線交拋物線C于不同于R的兩點A,B.若直線AR,BR分別交直線l:y=2x+2于M,N兩點,求線段MN最小時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有一些大小相同的小球,其中號數(shù)為1的小球1個,號數(shù)為2的小球2個,號數(shù)為3的小球3個,,號數(shù)為n的小球有n個,從袋中取一球,其號數(shù)記為隨機(jī)變量,則的數(shù)學(xué)期望E=______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ,且f(1)=3.
(1)求m的值;
(2)判斷函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形ABC中,A=60°,沿斜邊AC上的高BD,將△ABD折起到△PBD的位置,點E在線段CD上.
(1)求證:PE⊥BD;
(2)過點D作DM⊥BC交BC于點M,點N為PB中點,若PE∥平面DMN,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程個不同實數(shù)根,則n的值不可能為( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

同步練習(xí)冊答案