(本小題滿分12分)盒子內(nèi)有大小相同的9個(gè)球,其中2個(gè)紅色小球,3個(gè)白色小球,4個(gè)黑色小球,規(guī)定取出1紅色小球得到1分, 取出1白色小球得到0分, 取出1個(gè)黑色小球得到-1分,現(xiàn)從盒子中任取3個(gè)小球。
(Ⅰ)求取出的3個(gè)球顏色互不相同的概率;
(Ⅱ)求取出的3個(gè)球得分之和恰好為1分的概率;
(Ⅲ)設(shè)ξ為取出的3個(gè)球中白色球的個(gè)數(shù),求ξ的分布列及數(shù)學(xué)期望.
解:(1)取出的3個(gè)球顏色互不相同的概率,……………4分
(2)取出的3個(gè)球得分之和恰好為1分的概率…8分
(3)ξ的分布列為:     
     0      1      2      3
P                            
數(shù)學(xué)期望                 …………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩人輪流投籃,每人每次投一票.約定甲先投中者獲勝,一直到有人獲勝或每人都已投球3次時(shí)投籃結(jié)束.設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響.(Ⅰ) 求甲獲勝的概率;(Ⅱ)求投籃結(jié)束時(shí)甲的投籃次數(shù)的分布列與期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
張先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1,L2兩條路線(如圖),L1路線上有A1,A2,A3三個(gè)路口,各路口遇到紅燈的概率均為;L2路線上有B1,B2兩個(gè)路口,各路口遇到紅燈的概率依次為
(Ⅰ)若走L1路線,求最多遇到1次紅燈的概率;
(Ⅱ)若走L2路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助張先生分析上述兩條路線中,選擇哪條上班路線更好些,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)將編號(hào)為1,2,3,4的四張同樣材質(zhì)的卡片,隨機(jī)放入編碼分別為1,2,3,4的四個(gè)小盒中,每盒僅放一張卡片,若第號(hào)卡片恰好落入第號(hào)小盒中,則稱其為一個(gè)匹對(duì),用表示匹對(duì)的個(gè)數(shù).
(1)求第2號(hào)卡片恰好落入第2號(hào)小盒內(nèi)的概率;
(2)求匹對(duì)數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)對(duì)某班級(jí)50名同學(xué)一年來參加社會(huì)實(shí)踐的次數(shù)進(jìn)行的調(diào)查
統(tǒng)計(jì),得到如下頻率分布表:
參加次數(shù)
0
1
2
3
人數(shù)
0.1
0.2
0.4
0.3
根據(jù)上表信息解答以下問題:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨(dú)立.求:
(1)打了兩局就停止比賽的概率;
(2)打滿3局比賽還未停止的概率;
(3)比賽停止時(shí)已打局?jǐn)?shù)的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)設(shè)在12個(gè)同類型的零件中有2個(gè)次品,抽取3次進(jìn)行檢驗(yàn),每次任取一個(gè),并且取出不再放回,若以表示取出次品的個(gè)數(shù). 求的分布列,期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知隨機(jī)變量的分布規(guī)律如下,其中a、b、c為等差數(shù)列,若E()=,則D()為  (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果數(shù)據(jù)x1,x2,x3,…,xn的平均數(shù)為 ,方差為62,則數(shù)據(jù)3x1+5,3x2+5,…,3xn+5的平均數(shù)和方差分別是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案