11.已知奇函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),且不等式$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0對任意兩個不相等的正實數(shù)x1,x2都成立,在下列不等式中,正確的是( 。
A.f(-5)>f(3)B.f(-5)<f(3)C.f(-3)>f(-5)D.f(-3)<f(-5)

分析 根據(jù)不等式$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0對任意兩個不相等的正實數(shù)x1,x2都成立,得到f(x)在區(qū)間(-∞,0)、(0,+∞)單調(diào)遞增,從而求出答案.

解答 解;∵對任意正實數(shù)x1、x2(x1≠x2),
恒有不等式$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,
f(x)的定義域為(-∞,0)∪(0,+∞),
∴f(x)在區(qū)間(-∞,0)、(0,+∞)單調(diào)遞增,
∴f(-3)>f(-5),
故選:C.

點評 考查函數(shù)的單調(diào)性的定義及應(yīng)用定義比較函數(shù)值的大小,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a<0,解關(guān)于x的不等式ax2+(2-a)x-2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.M={x∈R|x≥2},a=π,則下列四個式子①a∈M;②{a}∈M;③a⊆M;④{a}∩M={π},其中正確的是( 。
A.①②B.①④C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某地鐵站每隔10分鐘有一趟地鐵通過,乘客到達地鐵站的任一時刻是等可能的,乘客候車不超過2分鐘的概率( 。
A.$\frac{1}{10}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=xlnx-ax(a∈R).
(1)若方程f(x)=-1無解,求實數(shù)a的取值范圍;
(2)當m>0,n>0,求證f(m)+f(n)≥f(m+n)-(m+n)ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x+1)=3x-2,且f(a)=1,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.飛機的航線和山頂在同一個鉛垂直平面內(nèi),已知飛機的高度為海拔15000m,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?8°,經(jīng)過108s后又看到山頂?shù)母┙菫?8°,則山頂?shù)暮0胃叨葹椋ā 。?table class="qanwser">A.(15-18$\sqrt{3}$sin18°cos78°)kmB.(15-18$\sqrt{3}$sin18°sin78°)kmC.(15-20$\sqrt{3}$sin18°cos78°)kmD.(15-20$\sqrt{3}$sin18°sin78°)km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}$=1的左右焦點分別為F1,F(xiàn)2,若雙曲線左支上有一點M到右焦點F2距離為18,N為F2中點,O為坐標原點,則|NO|等于( 。
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果復(fù)數(shù)在z=$\frac{3-i}{2+i}$,則|z|等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案