【題目】已知函數(shù)

(1)求曲線在點處的切線方程和函數(shù)的極值:

(2)若對任意,都有成立,求實數(shù)的最小值.

【答案】1)切線方程為,函數(shù)時,取得極小值21

【解析】試題分析:(1)根據(jù)導數(shù)幾何意義得曲線處的切線斜率等于,再根據(jù),利用點斜式可得切線方程為,求函數(shù)極值,首先求導函數(shù)零點:,列表分析導函數(shù)符號變化規(guī)律,確定函數(shù)極值(2)不等式恒成立問題一般轉化為對應函數(shù)最值問題:,再根據(jù)函數(shù)定義域討論函數(shù)最值取法:

;

試題解析:(1)因為,所以

因為,所以曲線處的切線方程為..........3

解得,則的變化情況如下:



2




0



遞減

極小值

遞增

所以函數(shù)時,取得極小值....................6

2)由題設知:當時,,當時,,

,令,則

由于,顯然不符合題設要求...9

,

由于,

顯然,當,對,不等式恒成立,

綜上可知,的最小值為1.........................................12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓: , 左右焦點分別為F1 , F2 , 過F1的直線l交橢圓于A,B兩點,若|BF2|+|AF2|的最大值為5,則b的值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,曲線C:ρ=2acosθ(a>0),l:ρcos(θ﹣)= , C與l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)O為極點,A,B為C上的兩點,且∠AOB= , 求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)當為常數(shù),且在區(qū)間變化時,求的最小值;

(2)證明:對任意的,總存在,使得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖F1、F2是橢圓C1+y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是
( 。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,M、N是焦點為F的拋物線y2=2px(p>0)上兩個不同的點,且線段MN中點A的橫坐標為4- ,
(1)求|MF|+|NF|的值;
(2)若p=2,直線MN與x軸交于點B點,求點B橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知AB為半圓O的直徑,且AB=4,C為半圓上一點,過點C作半圓的切線CD,過A點作AD⊥CD于D,交半圓于點E,DE=1.

(Ⅰ)證明:AC平分∠BAD;

(Ⅱ)求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的離心率e= ,直線l過A(a,0),B(0,﹣b)兩點,原點O到直線l的距離是
(1)求雙曲線的方程;
(2)過點B作直線m交雙曲線于M、N兩點,若 =﹣23,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
(1)求cosA的值;
(2)若a=4 ,b=5,求向量 方向上的投影.

查看答案和解析>>

同步練習冊答案