分析 對于①,根據(jù)F(x)的解析式以及f(x)的定義域,可得a≤x≤b,a≤-x≤b,又由0<b<-a,可得F(x)定義域,可得①正確;
對于②,先求出F(-x),可得F(-x)=-F(x),再結(jié)合F(x)的其定義域,可得F(x)為奇函數(shù),②正確;對于③,舉出反例,當(dāng)f(x)>1時(shí),可得F(x)的最小值不是0,故③錯(cuò)誤;
對于④,由于F(x)是奇函數(shù),結(jié)合奇函數(shù)的性質(zhì),可得④錯(cuò)誤;綜合可得答案.
解答 解:根據(jù)題意,依次分析4個(gè)命題:
對于①,對于F(x)=f2(x)-f2(-x),有a≤x≤b,a≤-x≤b,
而又由0<b<-a,則F(x)=f2(x)-f2(-x)中,x的取值范圍是-b≤x≤b,即其定義域是[-b,b],則①正確;
對于②,F(xiàn)(-x)=f2(-x)-f2(x)=-F(x),且其定義域?yàn)閇-b,b],關(guān)于原點(diǎn)對稱,
則F(x)為奇函數(shù),②正確;
對于③,由y=f(x)無零點(diǎn),假設(shè)f(x)=2x,F(xiàn)(x)=22x-2-2x=22x-$\frac{1}{{2}^{2x}}$無最小值,故③錯(cuò)誤;
對于④,由于F(x)是奇函數(shù),則F(x)在[-b,0]上與[0,b]上的單調(diào)性相同,故F(x)在其定義域內(nèi)不一定單調(diào)遞增,④錯(cuò)誤;
故答案為①②.
點(diǎn)評 本題考查函數(shù)的性質(zhì),涉及函數(shù)的定義域、奇偶性、單調(diào)性、最值等性質(zhì),判斷②時(shí),注意要結(jié)合函數(shù)F(x)的定義域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0)點(diǎn) | B. | ( $\overline{x}$,$\overline{y}$) 點(diǎn) | C. | (0,$\overline{y}$)點(diǎn) | D. | ( $\overline{x}$,0)點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2樓 | B. | 3樓 | C. | 4樓 | D. | 8樓 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com