12.設(shè)x,y∈R,復(fù)數(shù)z=x+yi,且滿足|z|2+(z+$\overline{z}$)i=$\frac{3-i}{2+i}$,試求x,y的值.

分析 把z=x+yi代入|z|2+(z+$\overline{z}$)i=$\frac{3-i}{2+i}$,整理后利用復(fù)數(shù)相等的條件列式求解x,y的值,則答案可求.

解答 解:把z=x+yi代入|z|2+(z+$\overline{z}$)i=$\frac{3-i}{2+i}$,
得${x}^{2}+{y}^{2}+2xi=\frac{(3-i)(2-i)}{(2+i)(2-i)}$=1-i,
則$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{2x=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=\frac{\sqrt{3}}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=-\frac{\sqrt{3}}{2}}\end{array}\right.$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)相等的條件,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=$\frac{\sqrt{2{x}^{2}+1}}{\sqrt{5-x}}$+$\sqrt{x-2}$的定義域?yàn)榧螦,且B={x|-3<x-4<4},C={x|x<a-1或x>a}.
(1)求A和(∁RA)∩B;
(2)若A∪C=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)全集U=R,已知$A=\left\{{x\left|{\frac{2x+3}{x-2}>0}\right.}\right\},B=\left\{{x\left|{|{x-1}|<2}\right.}\right\}$,則A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x(x>0)}\\{1(x=0)}\\{-x-1(x<0)}\end{array}\right.$
(1)求f{f[f(-1)]}的值;
(2)畫出函數(shù)的圖象;
(3)指出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某市在“國際禁毒日”期間,連續(xù)若干天發(fā)布了“珍愛生命,遠(yuǎn)離毒品”的電視公益廣告,期望讓更多的市民知道毒品的危害性.禁毒志愿者為了了解這則廣告的宣傳效果,隨機(jī)抽取了100名年齡階段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民進(jìn)行問卷調(diào)查,由此得到樣本頻率分布直方圖如圖所示.
(Ⅰ)求隨機(jī)抽取的市民中年齡在[30,40)的人數(shù);
(Ⅱ)試根據(jù)頻率分布直方圖估計(jì)市民的平均年齡;
(Ⅲ)從不小于40歲的人中按年齡段分層抽樣的方法隨機(jī)  抽取5人,再從得到的5人中抽到2人作為本次活動(dòng)的獲獎(jiǎng)?wù),記X為年齡在[50,60)年齡段的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠BAD=60°,AB=2AD,PD⊥底面ABCD.
(1)求證:AD⊥PB;
(2)若PD=AD=1,求三棱錐D-PAB的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.一個(gè)袋中裝有質(zhì)地均勻,大小相同的2個(gè)黑球和3個(gè)白球,從袋中一次任意摸出2個(gè)球,則恰有1個(gè)是白球的概率為$\frac{3}{5}$,從袋中一次任意摸出3個(gè)球,摸出白球個(gè)數(shù)的數(shù)學(xué)期望Eξ是1.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\sqrt{3}$cos2x+2sin($\frac{3π}{2}$+x)sin(π-x),x∈R
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間
(2)已知銳角△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且f(A)=-$\sqrt{3}$,a=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\sqrt{3}cos(\frac{π}{2}+x)•cosx+{sin^2}x$,x∈R.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$B=\frac{π}{4}$,a=2且角A滿足f(A)=0,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案