設(shè)a=log30.5,b=log0.53,c=30.5,d=0.50.3,則( 。
A、a<b<c<d
B、b<a<d<c
C、b<a<c<d
D、a<d<b<c
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:∵a=log30.5=
lg
1
2
lg3
=-
lg2
lg3
>-1,b=log0.53=-
lg3
lg2
<-1,
∴b<a<0.
又∵0<d=0.50.3<1,c=30.5>1,
∴b<a<d<c.
故選:B.
點評:本題考查了對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=x2-(a-1)x+3在區(qū)間(4,+∞)上是增函數(shù),那么實數(shù)a的取值范圍是( 。
A、(-∞,9]
B、[5,+∞)
C、[9,+∞)
D、(-∞,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(2x+
π
3
)+sin(2x-
π
3
),g(x)=
3
cos2x.
(Ⅰ)設(shè)h(x)=f(x)g(x),求函數(shù)h(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若一動直線x=t與函數(shù)y=f(x),y=g(x)的圖象分別交于M,N兩點,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,點P(-3,4,2 )在xOy平面上的射影H點的坐標(biāo)是( 。
A、( 0,0,2 )
B、( 0,4,2 )
C、(-3,0,2 )
D、(-3,4,0 )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(
3
3
,
3
9
)在冪函數(shù)y=f(x)的圖象上,則f(x)的表達式是( 。
A、f(x)=
x
3
B、f(x)=x3
C、f(x)=x-2
D、f(x)=(
1
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x+
π
3
)
的圖象向右平移φ(φ>0)個單位,所得圖象關(guān)于原點O對稱,則φ的最小值為
( 。
A、
3
B、
π
3
C、
π
6
D、
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(x-
π
6
)=
1
3
,則cos(
π
3
-2x)=(  )
A、
4
5
9
B、-
4
5
9
C、
7
9
D、-
7
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
x2-2x
的定義域
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1
(a>b>0)的離心率是
2
2
,且點P(
2
2
,1)
在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點D(2,0)的直線l與橢圓C交于不同的兩點E,F(xiàn),試求△OEF面積的取值范圍(O為坐標(biāo)原點).

查看答案和解析>>

同步練習(xí)冊答案