3.求解下列各式的值:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$+(-2017)0+(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$;
(2)$\sqrt{l{g}^{2}\frac{1}{3}-4lg3+4}$+lg6-lg0.02.

分析 (1)根據(jù)指數(shù)冪的運(yùn)算性質(zhì)計(jì)算即可.
(2)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:(1)${({2\frac{1}{4}})^{\frac{1}{2}}}+{({-2017})^0}+{({3\frac{3}{8}})^{-\frac{2}{3}}}=\frac{3}{2}+1+\frac{4}{9}=\frac{53}{18}$;
(2)原式=|lg3-2|+lg300=2-lg3+lg3+2=4.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì)和指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.等比數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=3•2n+k(n∈N*,k為常數(shù)),則k值為(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列四個(gè)命題:
①經(jīng)過(guò)定點(diǎn)P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示;
②經(jīng)過(guò)定點(diǎn)A(0,b)的直線都可以用方程y=kx+b表示;
③不經(jīng)過(guò)原點(diǎn)的直線都可以用方程$\frac{x}{a}$+$\frac{y}$=1表示;
④經(jīng)過(guò)任意兩個(gè)不同的 點(diǎn)P1(x1,y1)、P2(x2,y2)的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示;
其中真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在約束條件$\left\{\begin{array}{l}2x+y-2≥0\\ x-3y+6≥0\\ 3x-2y-3≤0\end{array}\right.$下,目標(biāo)函數(shù)z=|x-y+4|的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=2x+log3x的零點(diǎn)在區(qū)間(k,k+1)上,則整數(shù)k的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.命題“?x<0,x2-2x>0”的否定形式是?x<0,x2-2x≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.現(xiàn)要挖一個(gè)面積為432m2的矩形魚池,魚池周圍兩側(cè)留出寬分別為3m,4m的路,如圖所示,則總占地面積最小值為768m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}<\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}≤{a}_{n}<1}\end{array}\right.$,n∈N*),若a1=$\frac{6}{7}$,則a24的值為$\frac{3}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn),PA=PD=AD=2.
(1)AD⊥平面PQB;
(2)已知點(diǎn)M在線段PC上,且PA∥平面MQB,求$\frac{PM}{PC}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案