(2012•廣東模擬)若雙曲線
x2
a2
-
y2
9
=1
(a>0)的一條漸近線方程為3x-2y=0,則以雙曲線的頂點(diǎn)和焦點(diǎn)分別為焦點(diǎn)和頂點(diǎn)的橢圓的離心率為
2
13
13
2
13
13
分析:根據(jù)給出的漸近線方程求出a=2,得出雙曲線的頂點(diǎn)和焦點(diǎn),也就是橢圓焦點(diǎn)和頂點(diǎn),再求出離心率.
解答:解:雙曲線
x2
a2
-
y2
9
=1
(a>0)的漸近線方程為3x±ay=0,由已知,a=2.
雙曲線的頂點(diǎn)為(-2,0),(2,0)和焦點(diǎn)為(-
13
,0),(
13
,0),
所以橢圓的頂點(diǎn)為(-
13
,0),(
13
,0),焦點(diǎn)為(-2,0),(2,0),
橢圓的離心率為e=
2
13
=
2
13
13

故答案為:
2
13
13
點(diǎn)評(píng):本題考查雙曲線、橢圓的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.難度不大,應(yīng)準(zhǔn)確熟練求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)(幾何證明選講選做題)如圖,點(diǎn)M為⊙O的弦AB上的一點(diǎn),連接MO.MN⊥OM,MN交圓于N,若MA=2,MB=4,則MN=
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是
2
3
3
4
假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒有影響.
(1)求甲射擊3次,至少1次未擊中目標(biāo)的概率;
(2)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊,問:乙恰好射擊4次后,被中止射擊的概率是多少?
(3)設(shè)甲連續(xù)射擊3次,用ξ表示甲擊中目標(biāo)時(shí)射擊的次數(shù),求ξ的數(shù)學(xué)期望Eξ.(結(jié)果可以用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)等差數(shù)列{an}中,已知a3=5,a2+a5=12,an=29,則n為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)等比數(shù)列{an}中,a3=2,a7=8,則a5=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)已知實(shí)數(shù)x,y滿足約束條件
x≥1
y≤1
x-y≤0
’則z=2x-y的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案