設函數(shù)數(shù)學公式
①當a=1時,求函數(shù)f(x)的極值;
②若f(x)在數(shù)學公式上是遞增函數(shù),求實數(shù)a的取值范圍;
③當0<a<2時,數(shù)學公式,求f(x)在該區(qū)間上的最小值.

解:①因為
所以f'(x)=x2-ax-(a+1)…(1分)
因為a=1,所以
所以f'(x)=x2-x-2…(2分)
令f'(x)=0得,x1=-1,x2=2…(3分)
列表如下:
x(-∞,-1)-1(-1,2)2(2,+∞)
y'+0-0+
y極大值極小值
當x=-1時取得極大值,為;
當x=2時取得極小值,為…(5分)
②因為f(x)在上是遞增函數(shù),
所以f'(x)≥0在上恒成立,…(6分)
即x2-ax-(a+1)≥0在上恒成立.a(chǎn)(x+1)≤x2-1
解得…(8分)
③令f'(x)=0得,x1=-1,x2=a+1
列表如下:
x[1,a+1)a+1(a+1,4]
y'-0+
y極小值
由上表知當x=1或4時f(x)有可能取最大值,…(9分)
解得a=-4不符合題意舍.…(10分)
解得a=1…(11分)
因為a=1,
所以f'(x)=x2-x-2
令f'(x)=0得,x1=-1,x2=2…(12分)
列表如下:
x[1,2)2(2,4]
y'-0+
y極小值
當x=2時取得最小值,為…(14分)
分析:①因為,所以f'(x)=x2-ax-(a+1)…(1分)因為a=1,所以f'(x)=x2-x-2.令f'(x)=0得,x1=-1,x2=2列表討論,能求出函數(shù)的極值.
②因為f(x)在上是遞增函數(shù),所以x2-ax-(a+1)≥0在上恒成立.由此能求出實數(shù)a的取值范圍.
③令f'(x)=0得,x1=-1,x2=a+1,列表討論,能求出f(x)在區(qū)間[1,4]上的最小值.
點評:本題考查函數(shù)的極值,實數(shù)的取值范圍和函數(shù)的最小值的求法,解題時要認真審題,仔細解答,注意導數(shù)性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•保定一模)設函數(shù)f(x)=
1
3
x3+
a-1
2
x2-ax+a
,其中a>0.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若方程f(x)=0在(0,2)內(nèi)恰有兩個實數(shù)根,求a的取值范圍;
(3)當a=1時,設函數(shù)f(x)在[t,t+2](t∈(-3,-2))上的最大值為H(t),最小值為h(t),記g(t)=H(t)-h(t),求函數(shù)g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-ax-3.
(1)當a=1時,求函數(shù)f(x)的單調區(qū)間;
(2)當a=2時,設函數(shù)h(x)=(p-2)x-
p+2ex
-3
,若在區(qū)間[1,e]上至少存在一個x0,使得h(x0)>f(x0)成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
12
ax2+2ax-3lnx (a∈R)
,
(Ⅰ)若f(x)在x=1處有極值,求a;
(Ⅱ)若f(x)在[2,3]上為增函數(shù),求a的取值范圍.
(Ⅲ)當a=-1時,函數(shù)f(x)圖象上是否存在兩點,使得過此兩點處的切線互相垂直?試證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河西區(qū)二模)已知a>0,函數(shù)f(x)=x3-3a2x-2a,x∈[0,1].
(1)當a=1時,求f(x)在點(2,f(2))處的切線方程;
(2)求函數(shù)f(x)的單調區(qū)間;
(3)設函數(shù)g(x)=
4x2-72-x
是否存在實數(shù)a≥1,使得對于任意x1∈[0,1]總存在x0∈[0,1]滿足f(x1)=g(x0)?若存在,求出a的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)設函數(shù)f(x)=x3-x2-ax(a∈R).
(I)當a=1時,求函數(shù)f(x)的極值;
(II)若函數(shù)f(x)的圖象上存在與x軸平行的切線,求a的取值范圍.

查看答案和解析>>

同步練習冊答案