14.設P={x|x>4},Q={x|-2<x<2},則( 。
A.P⊆QB.Q⊆PC.P?∁RQD.Q⊆∁RP

分析 先求P的補集,再根據(jù)集合之間的關系即可判斷.

解答 解:∵設P={x|x>4},Q={x|-2<x<2},
∴∁RP={x|x≤4},
∴Q⊆∁RP,
故選:D

點評 本題考查了補集的運算和集合之間的關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=2x+ax2+bcosx函數(shù)在點$({\frac{π}{2},f({\frac{π}{2}})})$處的切線為y=$\frac{3π}{4}$.
(1)求函數(shù)a,b的值,并求出f(x)在[0,π]上的單調(diào)區(qū)間;
(2)若f(x1)=f(x2),且0<x1<x2<π,求證:$f'({\frac{{{x_1}+{x_2}}}{2}})<0$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.為推行“新課堂”教學法,某化學老師分別用原傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班進行教學實驗,為了解教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖如圖.記成績不低于70分者為“成績優(yōu)良”.
分數(shù)[50,59)[60,69)[70,79)[80,89)[90,100)
甲班頻數(shù)56441
乙班頻數(shù)13655
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.025的前提下認為“成
績優(yōu)良與教學方式有關”?
 甲班乙班總計
成績優(yōu)良   
成績不優(yōu)良   
總計   
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$.(n=a+b+c+d)
獨立性檢驗臨界表
P(K2≥0)0.100.050.0250.010
K02.7063.8415.0246.635
(2)現(xiàn)從上述40人中,學校按成績是否優(yōu)良采用分層抽樣的方法來抽取8人進行考核,在這8 人中,記成績不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若x,y滿足條件$\left\{\begin{array}{l}x-y≤2\\ x+y≥2\\ y≤2\end{array}$,則z=$\frac{y-x}{x-6}$的最大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等差數(shù)列{an}的前n項和為Sn,且a3=5,S15=225
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記b=2${\;}^{{a}_{n}}$+2n,{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知{an}是等差數(shù)列,a3+a11=40,則a6-a7+a8等于( 。
A.20B.48C.60D.72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=2sinxcosx+cos2x,則下列說法正確的是( 。
A.f(x)的圖象向右平移$\frac{π}{4}$個單位長度后得到$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$的圖象
B.若f(x1)=f(x2),則x1-x2=kπ,k∈Z
C.f(x)的圖象關于直線$x=\frac{5}{8}π$對稱
D.f(x)的圖象關于點$(-\frac{3}{8}π,0)$對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知tanα=-3,且α是第二象限的角.
(1)求cosα的值;
(2)求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設復數(shù)z滿足i•(z-4)=3+2i(i是虛數(shù)單位),則z的實部為6.

查看答案和解析>>

同步練習冊答案