A. | 11 | B. | 10 | C. | 9 | D. | 8 |
分析 C:(x-3)2+(y-4)2=1的圓心C(3,4),半徑r=1,設(shè)P(a,b)在圓C上,則$\overrightarrow{AP}$=(a+m,b),$\overrightarrow{BP}$=(a-m,b),由已知得m2=a2+b2=|OP|2,m的最大(小)值即為|OP|的最大(。┲担傻媒Y(jié)論.
解答 解:圓C:(x-3)2+(y-4)2=1的圓心C(3,4),半徑r=1,
設(shè)P(a,b)在圓C上,則$\overrightarrow{AP}$=(a+m,b),$\overrightarrow{BP}$=(a-m,b),
∵∠APB=90°,∴$\overrightarrow{AP}⊥\overrightarrow{BP}$,
∴$\overrightarrow{AP}•\overrightarrow{BP}$=(a+m)(a-m)+b2=0,
∴m2=a2+b2=|OP|2,
∴m的最大值即為|OP|的最大值,等于|OC|+r=5+1=6.
最小值即為|OP|的最小值,等于|OC|-r=5-1=4,
∴正數(shù)m的最小值與最大值的和為10.
故選B.
點(diǎn)評(píng) 本題考查實(shí)數(shù)的最大、小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 1.5 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{364}$ | B. | $\frac{1}{121}$ | C. | $\frac{120}{121}$ | D. | $\frac{363}{364}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com