已知f(x)=x2+c,且f[f(x)]=f(x2+1)
(1)設(shè)g(x)=f[f(x)],求g(x)的解析式;
(2)設(shè)φ(x)=g(x)-λf(x),試問:是否存在實數(shù)λ,使φ(x)在(-∞,-1)內(nèi)為減函數(shù),且在(-1,0)內(nèi)是增函數(shù)
(1) f(x)= (x2+1)2+1 (2) 當(dāng)λ=4時,φ(x)在(-∞,-1)上是減函數(shù),在(-1,0)上是增函數(shù),即滿足條件的λ存在
(1)由題意得f[f(x)]=f(x2+c)=(x2+c)2+c
f(x2+1)=(x2+1)2+c,∵f[f(x)]=f(x2+1)
∴(x2+c)2+c=(x2+1)2+c,
∴x2+c=x2+1,∴c=1
∴f(x)=x2+1,g(x)=f[f(x)]=f(x2+1)=(x2+1)2+1
(2)φ(x)=g(x)-λf(x)=x4+(2-λ)x2+(2-λ)
若滿足條件的λ存在,則φ′(x)=4x3+2(2-λ)x
∵函數(shù)φ(x)在(-∞,-1)上是減函數(shù),
∴當(dāng)x<-1時,φ′(x)<0
即4x3+2(2-λ)x<0對于x∈(-∞,-1)恒成立
∴2(2-λ)>-4x2,
∵x<-1,∴-4x2<-4
∴2(2-λ)≥-4,解得λ≤4
又函數(shù)φ(x)在(-1,0)上是增函數(shù)
∴當(dāng)-1<x<0時,φ′(x)>0
即4x2+2(2-λ)x>0對于x∈(-1,0)恒成立
∴2(2-λ)<-4x2,
∵-1<x<0,∴-4<4x2<0
∴2(2-λ)≤-4,解得λ≥4