精英家教網 > 高中數學 > 題目詳情
6.已知A(-1,1,2)、B(1,0,-1),設D在直線AB上,且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,設C(λ,$\frac{1}{3}$+λ,1+λ),若CD⊥AB,則λ的值為( 。
A.$\frac{11}{6}$B.-$\frac{11}{6}$C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 設出點D(x,y,z),利用向量的坐標表示與共線定理求出點D的坐標,再利用向量垂直數量積為0,列出方程求出λ的值.

解答 解:設D(x,y,z),則
$\overrightarrow{AD}$=(x+1,y-1,z-2),
$\overrightarrow{AB}$=(2,-1,-3),
$\overrightarrow{DB}$=(1-x,-y,-1-z),
∵$\overrightarrow{AD}$=2$\overrightarrow{DB}$,
∴(x+1,y-1,z-2)=2(1-x,-y,-1-z);
即$\left\{\begin{array}{l}{x+1=2(1-x)}\\{y-1=-2y}\\{z-2=-2-2z}\end{array}\right.$,
解得x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=0;
∴D($\frac{1}{3}$,$\frac{1}{3}$,0),
$\overrightarrow{CD}$=($\frac{1}{3}$-λ,-λ,-1-λ),
∵$\overrightarrow{CD}$⊥$\overrightarrow{AB}$,
∴$\overrightarrow{CD}$•$\overrightarrow{AB}$=2($\frac{1}{3}$-λ)+λ-3(-1-λ)=0,
解得λ=-$\frac{11}{6}$.
故選:B.

點評 本題考查了空間向量的共線定理與數量積的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

16.函數$y=\frac{lnx}{x}$的單調增區(qū)間是(  )
A.(0,e)B.(-∞,e)C.(e-1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.若直線y=x+m與曲線$y=\sqrt{1-{x^2}}$有兩個不同的交點,則實數m的取值范圍為( 。
A.$(-\sqrt{2},\sqrt{2})$B.$(1,\sqrt{2})$C.$(-1,\sqrt{2}]$D.$[1,\sqrt{2})$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.為了研究學生性別與是否喜歡數學課之間的關系,得到列聯(lián)表如下:
喜歡數學不喜歡數學總計
4080120
40140180
總計80220300
并經計算:K2≈4.545
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
請判斷有( 。┌盐照J為性別與喜歡數學課有關.
A.5%B.99.9%C.99%D.95%

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知向量$\overrightarrow a$=(-1,2),$\overrightarrow b$=(1,-2y),若$\overrightarrow a$∥$\overrightarrow b$,則 y 的值是1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.不等式組$\left\{\begin{array}{l}x-y≥0\\ x+y+2≥0\\ 2x-y-2≤0\end{array}\right.$所確定的平面區(qū)域記為D,則(x-2)2+(y+3)2的最小值為4.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知全集U={-1,0,1,2,3,4},且A∪B={1,2,3,4},A={2,3},則B∩(∁A)=( 。
A.{1,4}B.{1}C.{4}D.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知:函數f(x)=2$\sqrt{3}{sin^2}$x+sin2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調遞增區(qū)間;
(Ⅲ)把函數y=f(x)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移$\frac{π}{3}$個單位,得到函數y=g(x)的圖象,求$g(\frac{π}{6})$的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.設$a=\sqrt{5}-\sqrt{6},b=\sqrt{6}-\sqrt{7}$,則a,b的大小關系為a<b.

查看答案和解析>>

同步練習冊答案