19.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,|$\overrightarrow$|=2,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影等于$-\frac{1}{2}$.

分析 根據(jù)條件對$|\overrightarrow{a}+\overrightarrow|=\sqrt{3}$的兩邊平方即可求出$\overrightarrow{a}•\overrightarrow$的值,這樣根據(jù)一個向量在另一個向量方向上的投影的計算公式便可得出所要求的投影的值.

解答 解:根據(jù)條件,$|\overrightarrow{a}+\overrightarrow{|}^{2}={\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=$1+2\overrightarrow{a}•\overrightarrow+4$=3;
∴$\overrightarrow{a}•\overrightarrow=-1$;
$\overrightarrow{a}$在$\overrightarrow$方向上的投影為:
$|\overrightarrow{a}|cos<\overrightarrow{a},\overrightarrow>$=$|\overrightarrow{a}|•\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$
=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$
=$-\frac{1}{2}$;
∴$\overrightarrow{a}$在$\overrightarrow$方向上的投影等于$-\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.

點評 考查向量數(shù)量積的運算及計算公式,以及向量的投影的定義及其計算公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,四邊形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE=$\frac{1}{2}$,在折疊后的線段AD上是否存在一點P,且$\overrightarrow{AP}=λ\overrightarrow{PD}$,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;
(Ⅱ)求三棱錐A-CDF的體積的最大值,并求此時二面角E-AC-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四棱錐P-ABCD的側(cè)面PAD是正三角形,底面ABCD為菱形,A點E為AD的中點,若BE=PE.
(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)滿足f(x)=f′(1)ex-1-f(0)x+$\frac{1}{2}$x2.(e=2.71828…)
(1)求f(x)的解析式及單調(diào)區(qū)間;
(2)設a>0,若f(x)≥$\frac{1}{2}$x2+(a-1)x+b對任意x恒成立,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設函數(shù)f(x)=x2+aln(x+1)
(1)若a=-4,寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[2,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,PA切⊙O于點A,PBC是割線,弦CD∥AP,AD交BC于點E,F(xiàn)在CE上,且ED2=EF•EC.
(1)求證:∠EDF=∠P;
(2)若CE:EB=3:2,DE=6,EF=4,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知向量$\overrightarrow{a}$=(sinωx,cosωx),$\overrightarrow$=(cosωx,$\sqrt{3}$cosωx)(ω>0),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-$\frac{\sqrt{3}}{2}$的圖象的一個對稱中心與和它相鄰的一條對稱軸之間的距離為$\frac{π}{4}$.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間
(II) 在△ABC中,角A、B、C所的對邊分別是a、b、c,若f(A)=$\frac{\sqrt{3}}{2}$且a=1,b=$\sqrt{2}$,求S△ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-2x|x-a|(其中a∈R).
(1)當a=1時,求函數(shù)f(x)的值域;
(2)若y=f(x)在[0,2]上的最小值為-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.命題“?x>1,$\sqrt{x}$>1”的否定是( 。
A.?x0>1,$\sqrt{{x}_{0}}$≤1B.?x0>1,$\sqrt{{x}_{0}}$≤1C.?x0≤1,$\sqrt{{x}_{0}}$≤1D.?x0≤1,$\sqrt{{x}_{0}}$≤1

查看答案和解析>>

同步練習冊答案