設(shè)函數(shù)f(x)=lnx-ax+-1.
(1) 當(dāng)a=1時, 過原點的直線與函數(shù)f(x)的圖象相切于點P, 求點P的坐標(biāo);
(2) 當(dāng)0<a<時, 求函數(shù)f(x)的單調(diào)區(qū)間;
(3) 當(dāng)a=時, 設(shè)函數(shù)g(x)=x2-2bx-, 若對于x1, [0, 1]使f(x1)≥g(x2)成立, 求實數(shù)b的取值范圍.(e是自然對數(shù)的底, e<+1).

(1) (2) 增區(qū)間為減區(qū)間為, (3)

解析試題分析:函數(shù)的定義域為                 (2分)
(1)設(shè)點,當(dāng)時,,則,,∴                  (3分)
解得,故點P 的坐標(biāo)為                             (4分)
(2)
 ∴                                   (6分)
∴當(dāng),或,當(dāng)時,
故當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為
單調(diào)遞減區(qū)間為,                                  (8分)
(3)當(dāng)時,由(Ⅱ)可知函數(shù)上是減函數(shù),在上為增函數(shù),在上為減函數(shù),且,
,又,∴,
,故函數(shù)上的最小值為         (10分)
若對于,使 成立上的最小值不大于
上的最小值(*)     (11分)
,
①當(dāng)時,上為增函數(shù),與(*)矛盾
②當(dāng)時,,由得,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)的定義域為集合A,函數(shù)的值域為集合B
(Ⅰ)求集合A,B;
(Ⅱ)若集合A,B滿足,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)求極值;
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求,的值;
(2)當(dāng),時,若函數(shù)在區(qū)間[,2]上的最大值為28,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求它的定義域,值域;(2)判定它的奇偶性和周期性;(3)判定它的單調(diào)區(qū)間及每一區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)解關(guān)于的不等式
(2)若的解集非空,求實數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ) 當(dāng)時,求函數(shù)的極值;
(Ⅱ)當(dāng)時,討論函數(shù)的單調(diào)性.
(Ⅲ)若對任意及任意,恒有 成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)利用定義判斷函數(shù)的單調(diào)性;
(3)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)若處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案