7.已知函數(shù)f(x)=x+$\frac{a}{x}$+3,x∈N*,在x=5時(shí)取到最小值,則實(shí)數(shù)a的所有取值的集合為[20,30].

分析 先求導(dǎo),判斷函數(shù)的單調(diào)性得到函數(shù)的最小值,由題意可得x取離$\sqrt{a}$最近的正整數(shù)使f(x)達(dá)到最小,得到,f(5)≤f(6),f(4)≥f(5),解得即可.

解答 解:∵f(x)=x+$\frac{a}{x}$+3,x∈N*,
∴f′(x)=1-$\frac{a}{{x}^{2}}$=$\frac{{x}^{2}-a}{{x}^{2}}$,
當(dāng)a≤0時(shí),f′(x)≥0,函數(shù)f(x)為增函數(shù),最小值為f(x)min=f(1)=4+a,不滿足題意,
當(dāng)a>0時(shí),令f′(x)=0,解得x=$\sqrt{a}$,
當(dāng)0<x<$\sqrt{a}$時(shí),即f′(x)<0,函數(shù)單調(diào)遞減,
當(dāng)x>$\sqrt{a}$時(shí),即f′(x)>0,函數(shù)單調(diào)遞增,
∴當(dāng)x=$\sqrt{a}$時(shí)取最小值,
∵x∈N*,
∴x取離$\sqrt{a}$最近的正整數(shù)使f(x)達(dá)到最小,
∵x=5時(shí)取到最小值,
∴5<$\sqrt{a}$<6,或4<$\sqrt{a}$≤5
∴f(5)≤f(6)且f(4)≥f(5),
∴4+$\frac{a}{4}$+3≥5+$\frac{a}{5}$+3且5+$\frac{a}{5}$+3≤6+$\frac{a}{6}$+3
解得20≤a≤30
故答案為:[20,30]

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)和函數(shù)的單調(diào)性關(guān)系,以及參數(shù)的取值范圍,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ABC=90°,AB=$\sqrt{3}$,BC=1,AA1=3,BD⊥AC,M為線段CC1上一點(diǎn).
(Ⅰ)求CM的值,使得AM⊥平面A1BD;
(Ⅱ)在(Ⅰ)的條件下,求二面角B-AM-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期內(nèi)的圖象時(shí),列表并填入部分?jǐn)?shù)據(jù),如表:
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卡相應(yīng)的位置,并求f(x)的解析式;
(2)將函數(shù)f(x)的圖象上每一點(diǎn)的縱坐標(biāo)縮短到原來的$\frac{1}{2}$倍,橫坐標(biāo)不變,得到函數(shù)g(x)的圖象.試求g(x)在區(qū)間[π,$\frac{5π}{2}$]上的最值.
ωx+φ 0 $\frac{π}{2}$ π $\frac{3π}{2}$ 2π
 x  2π   $\frac{13π}{2}$
 f(x) 0 4 -4 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=Asin($\overline{ω}$x+φ)(A>0,$\overline{ω}$>0,0<φ<π)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為( 。
A.y=2sin(2x+$\frac{2π}{3}$)B.y=2sin(2x+$\frac{π}{3}$)C.y=2sin($\frac{x}{2}$-$\frac{π}{3}$)D.y=2sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求(∁UA)∩(∁UB)=( 。
A.{x|-2≤x≤3}B.{x|x<-2或x>4}C.{x|-3≤x≤4}D.{x|x<-3或x>4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(x+1)lnx-a(x-1).
(1)當(dāng)a=4求曲線y=f(x)在(1,f(1))處的切線方程;
(2)若 x>1 時(shí),f(x)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在正方體ABCD-A1B1C1D1中中,E,F(xiàn),G,H,M,N分別是正方體六個(gè)面的中心,求證:平面EFG∥平面HMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|1≤x≤5},B={x|a<x<a+1},若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(2x+1)=x2-2x+1,則f(3)=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案