5.設(shè)公差為-$\frac{1}{6}$的等差數(shù)列,如果a1+a4+a7+…+a97=50,那么a3+a6+a9+…+a99=(  )
A.$\frac{89}{2}$B.61C.39D.72

分析 利用等差數(shù)列的通項(xiàng)公式及其性質(zhì)即可得出.

解答 解:設(shè)m=a3+a6+a9+…+a99,
則m-50=33×$(-\frac{1}{6})$×2=-11,
解得m=39.
故選:C.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知α∈($\frac{π}{4}$,$\frac{π}{2}$),a=(cosα)cosα,b=(sinα)cosα,c=(cosα)sinα,則( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在數(shù)列{an}中,a1=2,an+1=an+2n(n∈N*),則數(shù)列{an}的通項(xiàng)公式是( 。
A.${a_n}={2^n}$B.${a_n}={3^{n-1}}$C.${a_n}={2^{n-2}}$D.${a_n}={3^{n-2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,M、N、P分別為空間四邊形ABCD的邊AB,BC,CD上的中點(diǎn),求證:
(1)AC∥平面MNP,
(2)平面MNP與平面ACD的交線與AC平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知不恒為零的函數(shù)f(x)=xlog2(ax+$\sqrt{a{x^2}+b}$)是偶函數(shù).
(1)求a,b的值;
(2)求不等式$\frac{{\sqrt{3}}}{3}$f(x-2)<log2(2+$\sqrt{3}$)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若1<α<3,-4<β<2,則α-|β|的取值范圍是(  )
A.(-3,0)B.(-3,3)C.(0,3)D.(-3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$\overrightarrow{a}$=(1,3),$\overrightarrow$=(2,λ),若向量$\overrightarrow{a}$,$\overrightarrow$的夾角為銳角,則λ的取值范圍為(-$\frac{2}{3}$,6)∪(6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在極坐標(biāo)系中,已知點(diǎn)(4,$\frac{π}{4}$),直線為ρsin(θ+$\frac{π}{4}$)=1.
(1)求點(diǎn)(4,$\frac{π}{4}$)的直角坐標(biāo)系下的坐標(biāo)與直線的普通方程;
(2)求點(diǎn)(4,$\frac{π}{4}$)到直線ρsin(θ+$\frac{π}{4}$)=1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知二次函數(shù)y=f(x)滿足:f(0)=0且f(x+1)=f(x)+2x+5,求f(x)的解析式;
(2)若f(-2x)+2f(2x)=3x-2,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案