已知在中,,,,解這個(gè)三角形;

【解析】本試題主要考查了正弦定理的運(yùn)用。由正弦定理得到:,然后又       

再又得到c。

解:由正弦定理得到:

                      ……4分

      ……8分

    

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題為選做題,請?jiān)谙铝腥}中任選一題作答)
A(《幾何證明選講》選做題).如圖:直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交邊AC于點(diǎn)D,AD=2,則∠C的大小為
30°
30°

B(《坐標(biāo)系與參數(shù)方程選講》選做題).已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,則點(diǎn)A(2,
4
)到這條直線的距離為
2
2
2
2

C(不等式選講)不等式|x-1|+|x|<3的解集是
(-1,2)
(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東肥城六中2008屆高中數(shù)學(xué)(新課標(biāo))模擬示范卷4 題型:044

(文)要將甲、乙兩種大小不同的鋼板截成A、B兩種規(guī)格,每張鋼板可同時(shí)截得A、B兩種規(guī)格的小鋼板的塊數(shù)如下表所示:

已知庫房中現(xiàn)有甲、乙兩種鋼板的數(shù)量分別為5張和10張,市場急需A、B兩種規(guī)格的成品數(shù)分別為15塊和27塊.

(1)問各截這兩種鋼板多少張可得到所需的成品數(shù),且使所用的鋼板張數(shù)最少?

(2)若某人對線性規(guī)劃知識了解不多,而在可行域的整點(diǎn)中隨意取出一解,求其恰好取到最優(yōu)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要將甲、乙兩種大小不同的鋼板截成A、B兩種規(guī)格,每張鋼板可同時(shí)截得A、B兩種規(guī)格的小鋼板的塊數(shù)如下表所示:

規(guī)格類型

鋼板類型

A

B

2

1

1

3

已知庫房中現(xiàn)有甲、乙兩種鋼板的數(shù)量分別為5張和10張,市場急需A、B兩種規(guī)格的成品數(shù)分別為15塊和27塊.

(1)問各截這兩種鋼板多少張可得到所需的成品數(shù),且使所用的兩張鋼板的總張數(shù)最少?

(2)有5個(gè)同學(xué)對線性規(guī)劃知識了解不多,但是畫出了可行域,他們每個(gè)人都在可行域的整點(diǎn)中隨意取出一解,求恰好有2個(gè)人取到最優(yōu)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要將甲、乙兩種大小不同的鋼板截成A、B兩種規(guī)格,每張鋼板可同時(shí)截得A、B兩種規(guī)格的小鋼板的塊數(shù)如下表所示:

規(guī)格類型

鋼板類型

A

B

2

1

1

3

已知庫房中現(xiàn)有甲、乙兩種鋼板的數(shù)量分別為5張和10張,市場急需A、B兩種規(guī)格的成品數(shù)分別為15塊和27塊.

(1)問各截這兩種鋼板多少張可得到所需的成品數(shù),且使所用的兩張鋼板的總張數(shù)最少?

(2)有5個(gè)同學(xué)對線性規(guī)劃知識了解不多,但是畫出了可行域,他們每個(gè)人都在可行域的整點(diǎn)中隨意取出一解,求恰好有2個(gè)人取到最優(yōu)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

為了解某班學(xué)生喜愛打羽毛球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

 

 

喜愛打羽毛球

不喜愛打羽毛球

合計(jì)

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中隨機(jī)抽取1人抽到不喜愛打羽毛球的學(xué)生的概率

(1)請將上面的列聯(lián)表補(bǔ)充完整;

(2)是否有99.5%的把握認(rèn)為喜愛打羽毛球與性別有關(guān)?說明你的理由;

(3)已知喜愛打羽毛球的10位女生中,還喜歡打籃球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打籃球、喜歡打乒乓球、喜歡踢足球的6位女生中各選出1名進(jìn)行其他方面的調(diào)查,求女生不全被選中的概率.下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(參考公式:其中.)

【解析】第一問利用數(shù)據(jù)寫出列聯(lián)表

第二問利用公式計(jì)算的得到結(jié)論。

第三問中,從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:

 ,

基本事件的總數(shù)為8

表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于 2個(gè)基本事件由對立事件的概率公式得

解:(1) 列聯(lián)表補(bǔ)充如下:

 

 

喜愛打羽毛球

不喜愛打羽毛球

合計(jì)

男生

20

25

女生

10

15

25

合計(jì)

30

20

50

(2)∵

∴有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)

(3)從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:

 ,

基本事件的總數(shù)為8,

表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于 2個(gè)基本事件由對立事件的概率公式得.

 

查看答案和解析>>

同步練習(xí)冊答案