【題目】疫情期間口罩需求量大增,某醫(yī)療器械公司開始生產(chǎn)KN95口罩,并且對(duì)所生產(chǎn)口罩的質(zhì)量按指標(biāo)測(cè)試分?jǐn)?shù)進(jìn)行劃分,其中分?jǐn)?shù)不小于70的為合格品,否則為不合格品,現(xiàn)隨機(jī)抽取100件口罩進(jìn)行檢測(cè),其結(jié)果如下:
(1)根據(jù)表中數(shù)據(jù),估計(jì)該公司生產(chǎn)口罩的不合格率;
(2)根據(jù)表中數(shù)據(jù),估計(jì)該公司口罩的平均測(cè)試分?jǐn)?shù);
(3)若用分層抽樣的方式按是否合格從所生產(chǎn)口罩中抽取5件,再?gòu)倪@5件口罩中隨機(jī)抽取2件,求這2件口罩全是合格品的概率.
【答案】(1);(2);(3).
【解析】
(1)根據(jù)表中數(shù)據(jù)確定不合格的口罩?jǐn)?shù),再利用頻數(shù)除以總數(shù)估計(jì)不合格率;
(2)根據(jù)平均數(shù)計(jì)算公式直接求解;
(3)先根據(jù)分層抽樣確定抽取的5件口罩中不合格的1件,合格的4件,再利用枚舉法列出基本事件總數(shù)以及至少有一件不合格品包含的基本事件數(shù),最后根據(jù)古典概型概率公式以及對(duì)立事件概率公式求解.
解:(1)在抽取的100件產(chǎn)品中,不合格的口罩有:4+16=20(件)
所以口罩為不合格品的頻率為,
根據(jù)頻率可估計(jì)該公司所生產(chǎn)口罩的不合格率為.
(2)平均測(cè)試分?jǐn)?shù)為
·
(3)由題意所抽取的5件口罩中不合格的1件,合格的4件.
設(shè)4件合格口罩記為a,b,c,d,1件不合格口罩記為x.
若抽取的口罩中恰有1件不合格,則共有ax,bx,cx,dx,4種情況.·
而從5件口罩中抽取2件,共有ab,ac,ad,ax,bc,bd,bx,cd,cx,dx,種情況.
所以2件口罩中至少有一件不合格品的概率為.
故2件口罩全是合格品的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年“雙十一”全網(wǎng)銷售額達(dá)3143.25億元,相當(dāng)于全國(guó)人均消費(fèi)225元,同比增長(zhǎng)23.8%,監(jiān)測(cè)參與“雙十一”狂歡大促銷的22家電商平臺(tái)有天貓、京東、蘇寧易購(gòu)、網(wǎng)易考拉在內(nèi)的綜合性平臺(tái),有拼多多等社交電商平臺(tái),有敦煌網(wǎng)、速賣通等出口電商平臺(tái).某大學(xué)學(xué)生社團(tuán)在本校1000名大一學(xué)生中采用男女分層抽樣,分別隨機(jī)調(diào)查了若干個(gè)男生和60個(gè)女生的網(wǎng)購(gòu)消費(fèi)情況,制作出男生的頻率分布表、直方圖(部分)和女生的莖葉圖如下:
(1)請(qǐng)完成頻率分布表的三個(gè)空格,并估計(jì)該校男生網(wǎng)購(gòu)金額的中位數(shù)(單位:元,精確到個(gè)位).
(2)若網(wǎng)購(gòu)為全國(guó)人均消費(fèi)的三倍以上稱為“剁手黨”估計(jì)該校大一學(xué)生中的“剁手黨”人數(shù)為多少?從抽樣數(shù)據(jù)中網(wǎng)購(gòu)不足200元的同學(xué)中隨機(jī)抽取2人發(fā)放紀(jì)念品,則2人都是女生的概率為多少?
(3)用頻率估計(jì)概率,從全市所有高校大一學(xué)生中隨機(jī)調(diào)查5人,求其中“剁手黨”人數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】符號(hào)表示不大于x的最大整數(shù),例如:.
(1)解下列兩個(gè)方程;
(2)設(shè)方程: 的解集為A,集合,,求實(shí)數(shù)k的取值范圍;
(3)求方程的實(shí)數(shù)解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程及曲線的普通方程;
(2)設(shè)是曲線上的一動(dòng)點(diǎn),求到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在上的最小值;
(2)若,當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求此時(shí)實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“雙十一”期間,某淘寶店主對(duì)其商品的上架時(shí)間(小時(shí))和銷售量(件)的關(guān)系作了統(tǒng)計(jì),得到了如下數(shù)據(jù)并研究.
上架時(shí)間 | 2 | 4 | 6 | 8 | 10 | 12 |
銷售量 | 64 | 138 | 205 | 285 | 360 | 430 |
(1)求表中銷售量的平均數(shù)和中位數(shù);
(2)① 作出散點(diǎn)圖,并判斷變量與是否線性相關(guān)?若研究的方案是先根據(jù)前5組數(shù)據(jù)求線性回歸方程,再利用第6組數(shù)據(jù)進(jìn)行檢驗(yàn),求線性回歸方程;
②若根據(jù)①中線性回歸方程得到商品上架12小時(shí)的銷售量的預(yù)測(cè)值與檢測(cè)值不超過(guò)3件,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn):①中的線性回歸方程是否理想.
附:線性回歸方程中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】底面為菱形的直棱柱
中,
分別為棱
的中點(diǎn).
(1)在圖中作一個(gè)平面
,使得
,且平面
.(不必給出證明過(guò)程,只要求作出
與直棱柱
的截面).
(2)若
,求平面
與平面
的距離
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體的棱長(zhǎng)為2,分別為的中點(diǎn),則( )
A.直線與直線垂直B.直線與平面平行
C.平面截正方體所得的截面面積為D.點(diǎn)與點(diǎn)到平面的距離相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,其中為實(shí)常數(shù).
(1)若函數(shù)在區(qū)間[2,3]上為單調(diào)遞增函數(shù),求的取值范圍;
(2)高函數(shù)在區(qū)間上的最小值為,試討論函數(shù),的零點(diǎn)的情況.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com