【題目】已知拋物線的準(zhǔn)線與半橢圓相交于兩點(diǎn),且.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點(diǎn)是半橢圓上一動(dòng)點(diǎn),過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,求面積的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)由拋物線準(zhǔn)線與橢圓相交的弦長構(gòu)建方程求得p值即可;
(Ⅱ)設(shè)點(diǎn)坐標(biāo)為,由題意可知切線斜率不會為0,設(shè)出兩條切線的直線方程,聯(lián)立直線與拋物線方程,由相切關(guān)系構(gòu)建方程,并由兩切點(diǎn)分別得到是方程的兩根,進(jìn)而由韋達(dá)定理與直線和方程的關(guān)系可知,是的兩點(diǎn),再由點(diǎn)到直線的距離公式和弦長公式表示的底和高從而表示面積,最后換元求函數(shù)的最值即可.
(Ⅰ)由題可知,拋物線的準(zhǔn)線為,則有得,
所以.
(Ⅱ)設(shè)點(diǎn)坐標(biāo)為,且滿足.
由題意可知切線斜率不會為0,即設(shè)切線為,
代入得,
由可得①,
設(shè)切點(diǎn),拋物線的上半部曲線函數(shù)關(guān)系式為,則,
故,將其代入①可得②.
設(shè)切線為,切點(diǎn),同理可得③.
由②③可知是方程的兩根,所以,,
又,,所以代入②③可知,是的兩點(diǎn),即直線方程為.
故
又因?yàn)?/span>且,所以.
令,由二次函數(shù)性質(zhì)可知,其在上單調(diào)遞減,故,
所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)設(shè)是曲線上的一個(gè)動(dòng)瞇,當(dāng)時(shí),求點(diǎn)到直線的距離的最小值;
(2)若曲線上所有的點(diǎn)都在直線的右下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在處的切線方程;
(2)設(shè),求函數(shù)的單調(diào)區(qū)間;
(3)若對任意的恒成立,求滿足題意的所有整數(shù)m的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧運(yùn)動(dòng)會即第24屆冬季奧林匹克運(yùn)動(dòng)會將在2022年2月4日至2月20日在北京和張家口舉行,某研究機(jī)構(gòu)為了了解大學(xué)生對冰壺運(yùn)動(dòng)的興趣,隨機(jī)從某大學(xué)生中抽取了100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)男生與女生的人數(shù)比為,男生中有20人表示對冰壺運(yùn)動(dòng)有興趣,女生中有15人對冰壺運(yùn)動(dòng)沒有興趣.
(1)完成列聯(lián)表,并判斷能否有把握認(rèn)為“對冰壺運(yùn)動(dòng)是否有興趣與性別有關(guān)”?
有興趣 | 沒有興趣 | 合計(jì) | |
男 | 20 | ||
女 | 15 | ||
合計(jì) | 100 |
(2)用分層抽樣的方法從樣本中對冰壺運(yùn)動(dòng)有興趣的學(xué)生中抽取6人,求抽取的男生和女生分別為多少人?若從這6人中選取兩人作為冰壺運(yùn)動(dòng)的宣傳員,求選取的2人中恰好有1位男生和1位女生的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年5月17日晚“2019年感動(dòng)中國人物名單揭曉”,中國女排位列其中,在感動(dòng)中國的舞臺上,她們的一句“我們沒贏夠”,再次鼓舞中國人民中國之光——中國女排,一次次在逆境中絕地反擊,贏得奧運(yùn)冠軍,“女排精神”也是我們當(dāng)前處于“新冠”逆境中的高三學(xué)子們學(xué)習(xí)的榜樣,前進(jìn)的動(dòng)力.一次比賽中,中國女排能夠闖入決賽的概率為0.8,在闖入決賽條件下中國女排能夠獲勝的概率是0.9,則中國女排闖進(jìn)決賽且獲得冠軍的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元前5世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面1000米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)?/span>10倍.當(dāng)比賽開始后,若阿基里斯跑了1000米,此時(shí)烏龜便領(lǐng)先他100米,當(dāng)阿基里斯跑完下一個(gè)100米時(shí),烏龜領(lǐng)先他10米,當(dāng)阿基里斯跑完下一個(gè)10米時(shí),烏龜先他1米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為0.001米時(shí),烏龜爬行的總距離為( )
A.米B.米C.米D.米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遼寧省六校協(xié)作體(葫蘆島第一高中、東港二中、鳳城一中、北鎮(zhèn)高中、瓦房店高中、丹東四中)中的某校文科實(shí)驗(yàn)班的名學(xué)生期中考試的語文、數(shù)學(xué)成績都不低于分,其中語文成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:、、、、.
(1)根據(jù)頻率分布直方圖,估計(jì)這名學(xué)生語文成績的中位數(shù)和平均數(shù);(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;中位數(shù)精確到)
(2)若這名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示:
分組區(qū)間 | ||||
從數(shù)學(xué)成績在的學(xué)生中隨機(jī)選取人,求選出的人中恰好有人數(shù)學(xué)成績在的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com