7.已知函數(shù)f(x)=ax3+bx+7(其中a,b為常數(shù)),若f(-7)=-17,則f(7)的值為(  )
A.31B.17C.-17D.15

分析 直接利用函數(shù)的奇偶性的性質(zhì)轉(zhuǎn)化求解即可.

解答 解:函數(shù)f(x)=ax3+bx+7(其中a,b為常數(shù)),若f(-7)=-a•73-7b+7=-17,
則f(7)=a•73+7b+7=-(-a•73-7b+7)+14=17+14=31.
故選:A.

點(diǎn)評 本題考查函數(shù)的奇偶性的性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線xsin 30°+ycos 150°+1=0的斜率是( 。
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,1),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.2B.5$\sqrt{2}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.拋物線y2=12x上與焦點(diǎn)的距離等于6的點(diǎn)的坐標(biāo)是(3,6)或(3,-6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)=Asin(ωx+φ),(A>0,ω>0,φ∈(0,π)),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則下列對f(x)的說法正確的是(  )
A.最大值為4且關(guān)于直線$x=-\frac{π}{2}$對稱
B.最大值為4且在$[{-\frac{π}{2}\;\;,\;\;\frac{π}{2}}]$上單調(diào)遞增
C.最大值為2且關(guān)于點(diǎn)$({-\frac{π}{2}\;\;,\;\;0})$中心對稱
D.最大值為2且在$[{-\frac{π}{2}\;\;,\;\;\frac{3π}{2}}]$上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.記F(x,y)=x+y-a(2$\sqrt{3xy}$+x),存在x0∈R+使F(x0,3)=3,則實(shí)數(shù)a滿足( 。
A.0<a<1B.0≤a<1C.0<a≤1D.0<a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等差數(shù)列{an}中,首項(xiàng)a1=-20,公差d=3,則|a1|+|a2|+|a3|+…+|a11|=( 。
A.99B.100C.-55D.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知約束條件$\left\{\begin{array}{l}x≥k\\ x+y-4≤0\\ x-y≤0\end{array}\right.$表示面積為1的直角三角形區(qū)域,則實(shí)數(shù)k的值為( 。
A.0B.1C.1或3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)=$\left\{\begin{array}{l}{x-5(x≥6)}\\{f(x+2)(x<6)}\end{array}\right.$,則f(1)為( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案