{an}為首項為正數(shù)的遞增等差數(shù)列,其前n項和為Sn,則點(n,Sn)所在的拋物線可能為( )
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第5課時練習(xí)卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)的定義域為R,x0(x0≠0)是f(x)的極大值點,以下結(jié)論一定正確的是( )
A.?x∈R,f(x)≤f(x0)
B.-x0是f(-x)的極小值點
C.-x0是-f(x)的極小值點
D.-x0是-f(-x)的極小值點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第1課時練習(xí)卷(解析版) 題型:填空題
已知在實數(shù)a,b滿足某一前提條件時,命題“若a>b,則<”及其逆命題、否命題和逆否命題都是假命題,則實數(shù)a,b應(yīng)滿足的前提條件是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題四練習(xí)卷(解析版) 題型:解答題
已知n∈N*,數(shù)列{dn}滿足dn=,數(shù)列{an}滿足an=d1+d2+d3+…+d2n.又知數(shù)列{bn}中,b1=2,且對任意正整數(shù)m,n,.
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)將數(shù)列{bn}中的第a1項,第a2項,第a3項,…,第an項刪去后,剩余的項按從小到大的順序排成新數(shù)列{cn},求數(shù)列{cn}的前2013項和T2013.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題四練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)是R上的單調(diào)遞增函數(shù)且為奇函數(shù),數(shù)列{an}是等差數(shù)列,a3>0,則f(a1)+f(a3)+f(a5)的值( )
A.恒為正數(shù)
B.恒為負(fù)數(shù)
C.恒為0
D.可以為正數(shù)也可以為負(fù)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題六練習(xí)卷(解析版) 題型:解答題
(13分)已知圓O:x2+y2=3的半徑等于橢圓E:=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內(nèi),且到直線l:y=x-的距離為-,點M是直線l與圓O的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題六練習(xí)卷(解析版) 題型:選擇題
已知圓C經(jīng)過A(5,2),B(-1,4)兩點,圓心在x軸上,則圓C的方程是( )
A.(x-2)2+y2=13 B.(x+2)2+y2=17
C.(x+1)2+y2=40 D.(x-1)2+y2=20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有三個不同的零點,則實數(shù)m的取值范圍為( )
A.-,1 B.-,1 C.-,0 D.-,0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題三練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)y=Asin(ωx+φ)+k的最大值為4,最小值為0,最小正周期為,直線x=是其圖像的一條對稱軸,則下列各式中符合條件的解析式為( )
A.y=4sin4x+ B.y=2sin2x++2 C.y=2sin4x++2 D.y=2sin4x++2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com