11.過(guò)點(diǎn)(0,3)且與直線2x+y-5=0垂直的直線方程為( 。
A.2x+y-3=0B.x+2y-6=0C.x-2y+6=0D.2x-y+3=0

分析 設(shè)與直線2x+y-5=0垂直的直線方程為x-2y+c=0,把點(diǎn)(0,3)代入,得0-6+c=0,解得c=6,由此能求出過(guò)點(diǎn)(0,3)且與直線2x+y-5=0垂直的直線方程.

解答 解:設(shè)與直線2x+y-5=0垂直的直線方程為x-2y+c=0,
把點(diǎn)(0,3)代入,得0-6+c=0,
解得c=6,
∴過(guò)點(diǎn)(0,3)且與直線2x+y-5=0垂直的直線方程是x-2y+6=0.
故選C.

點(diǎn)評(píng) 本題考查直線方程的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知$f(x)={log_{0.5}}({x^2}-mx-m)$.
(1)若函數(shù)f(x)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間$(-2,-\frac{1}{2})$上是遞增的,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,x).
(1)如果$\overrightarrow{a}$∥$\overrightarrow$,求實(shí)數(shù)x的值;
(2)如果x=-1,求向量$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知第二象限的角α的終邊與單位圓的交點(diǎn)$P(m,\frac{{\sqrt{3}}}{2})$,則tanα=-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.M是z軸上一點(diǎn),且到點(diǎn)A(1,0,2)與點(diǎn)B(1,-3,1)的距離相等,則點(diǎn)M關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(0,0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=t-3\end{array}\right.$(t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,a=3$\sqrt{2}$,c=$\sqrt{3}$,cosC=$\frac{2\sqrt{2}}{3}$,則sinA=$\frac{\sqrt{6}}{3}$,若b<a,則b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年湖北省仙桃市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

不等式的解集為,則 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年河南省商丘市高一理下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:解答題

四邊形ABCD的內(nèi)角A與C互補(bǔ),AB=1,BC=3,CD=DA=2.

(Ⅰ)求C和BD;

(Ⅱ)求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案