已知關于x的不等式
(a+1)x-3x-1
<1

(Ⅰ)當a=1時,解該不等式;
(Ⅱ)當a>0時,解該不等式.
分析:(Ⅰ)先將不等式化簡,再因式分解,即可求得結論;
(Ⅱ)原不等式等價于(ax-2)(x-1)<0,結合a>0,分類討論,即可解不等式.
解答:解:原不等式可化為
(a+1)x-3
x-1
-1<0
,即
ax-2
x-1
<0
,等價于(ax-2)(x-1)<0
(Ⅰ)當a=1時,不等式等價于(x-1)(x-2)<0,
∴1<x<2
∴原不等式的解集為{x|1<x<2}.
(Ⅱ)∵原不等式等價于(ax-2)(x-1)<0,∴a(x-
2
a
)(x-1)<0

∵a>0,∴(x-
2
a
)(x-1)<0

2
a
>1
,即0<a<2時,解集為{x|1<x<
2
a
}
;
2
a
=1
,即a=2時,解集為∅;
2
a
<1
,即a>2時,解集為{x|
2
a
<x<1}
點評:本題考查不等式的解法,考查分類討論的數(shù)學思想,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式ax2-2ax+x-2<0
(1)當a=3時,求此不等式解集;
(2)當a<0時,求此不等式解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-5:不等式選講)
已知關于x的不等式|x-a|+1-x>0的解集為R,(1)求實數(shù)a的取值范圍.(2)證明:若x-1<0,則a∈R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式(a+b)x+(2a-3b)<0的解集是{x|x>3},則不等式(a-3b)x+(b-2a)>0的解集是
{x|x>
1
3
}
{x|x>
1
3
}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•楊浦區(qū)二模)已知關于x的不等式x2+mx-2<0解集為(-1,2).
(1)求實數(shù)m的值;
(2)若復數(shù)z1=m+2i,z2=cosα+isinα,z1•z2為純虛數(shù),求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,已知兩圓交于A、B兩點,過點A、B的直線分別與兩圓交于P、Q和M、N.求證:PM∥QN.
B.(矩陣與變換)
已知矩陣A的逆矩陣A-1=
10
02
,求矩陣A.
C.(極坐標與參數(shù)方程)
在平面直角坐標系xOy中,過橢圓
x2
12
+
y2
4
=1
在第一象限處的一點P(x,y)分別作x軸、y軸的兩條垂線,垂足分別為M、N,求矩形PMON周長最大值時點P的坐標.
D.(不等式選講)
已知關于x的不等式|x-a|+1-x>0的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案