已知圓x2+y2-4x=0與拋物線y2=4mx(m≠0)的準(zhǔn)線無交點(diǎn),則實(shí)數(shù)m的取值范圍是


  1. A.
    -2<m<0
  2. B.
    -4<m<0
  3. C.
    m>0或m<-4
  4. D.
    m>0或m<-2
C
分析:先表示出準(zhǔn)線方程,將圓的方程化為標(biāo)準(zhǔn)方程,然后根據(jù)圓x2+y2-4x=0與拋物線y2=4mx(m≠0)的準(zhǔn)線無交點(diǎn),可以得到圓心到準(zhǔn)線的距離大于半徑,從而得到實(shí)數(shù)m的取值范圍.
解答:y2=4mx(m≠0)的準(zhǔn)線方程為x=-m,圓x2+y2-4x=0化為標(biāo)準(zhǔn)方程為:(x-2)2+y2=4
因?yàn)閳Ax2+y2-4x=0與拋物線y2=4mx(m≠0)的準(zhǔn)線無交點(diǎn),
所以d=|m+2|>2
∴m>0或m<-4
故選C
點(diǎn)評(píng):本題重點(diǎn)考查拋物線的相關(guān)幾何性質(zhì)及直線與圓的位置關(guān)系,利用圓心到準(zhǔn)線的距離大于半徑建立不等式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、已知圓x2+y2=4,過A(4,0)作圓的割線ABC,則弦BC中點(diǎn)的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4上恰有兩個(gè)點(diǎn)到直線4x-3y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是
(-15,-5)∪(5,15)
(-15,-5)∪(5,15)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=4內(nèi)一定點(diǎn)M(0,1),經(jīng)M且斜率存在的直線交圓于A(x1,y1)、B(x2,y2)兩點(diǎn),過點(diǎn)A、B分別作圓的切線l1,l2.設(shè)切線l1,l2交于點(diǎn)Q.
(1)設(shè)點(diǎn)P(x0,y0)是圓上的點(diǎn),求證:過P的圓的切線方程是
x
 
0
x+y0y=4

(2)求證Q在一定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4上有且僅有三個(gè)點(diǎn)到直線12x-5y+c=0的距離為1,則實(shí)數(shù)c的值是
±13
±13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4及點(diǎn)P(1,1),則過點(diǎn)P的直線中,被圓截得的弦長(zhǎng)最短時(shí)的直線的方程是
x+y-2=0
x+y-2=0

查看答案和解析>>

同步練習(xí)冊(cè)答案