如圖所示,已知△ABC三邊所在直線分別與平面α交于P、Q、R三點,求證:P、Q、R三點共線.

答案:
解析:

  思路解析:證明點共線、線共點問題時要綜合利用公理2和公理3.

  證明:∵A、B、C是不在同一直線上的三點,

  ∴過A、B、C有一個平面β.

  又∵AB∩α=P,且ABβ,

  ∴點P既在β內(nèi)又在α內(nèi).設(shè)α∩β=l,

  則P∈l.

  同理可證:Q∈l,R∈l.

  ∴P、Q、R三點共線.

  方法歸納:(1)證明三點共線,通常先確定經(jīng)過兩點的直線是某兩個平面的交線,再證明第三點是這兩個平面的公共點,即該點分別在這兩個平面內(nèi).

  (2)證明三線共點通常先證其中的兩條直線相交于一點,然后再證第三條直線經(jīng)過這一點.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、如圖所示,已知AB⊥平面BCD,BC⊥CD,則圖中互相垂直的平面有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知AB⊥平面BCD,M、N分別是AC、AD的中點,BC⊥CD.
(1)求證:MN∥平面BCD;
(2)求證:平面BCD⊥平面ABC;
(3)若AB=1,BC=
3
,求直線AC與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A:如圖所示,已知AB為⊙O的直徑,AC為弦,OD∥BC,交AC于點D,BC=4cm,
(1)試判斷OD與AC的關(guān)系;
(2)求OD的長;
(3)若2sinA-1=0,求⊙O的直徑.
B:(選修4-4)已知直線l經(jīng)過點P(1,1),傾斜角α=
4

(1)寫出直線l的參數(shù)方程;
(2)設(shè)l與圓x2+y2=4相交于兩點A、B,求點P到A、B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一次機器人足球比賽中,甲隊1號機器人由點A開始作勻速直線運動,到達(dá)點B時,發(fā)現(xiàn)足球在點D處正以2倍于自己的速度向點A作勻速直線滾動.如圖所示,已知AB=4
2
dm,AD=17dm,∠BAC=45°
.若忽略機器人原地旋轉(zhuǎn)所需的時間,則該機器人最快可在何處截住足球?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知
AB
=2
BC
,
OA
=
a
,
OB
=
b
,
OC
=
c
,則
c
=
 
.(用
a
b
表示)

查看答案和解析>>

同步練習(xí)冊答案