19.已知函數(shù)$f(x)={e^x}-f(0)x+\frac{1}{2}{x^2}$,則f'(1)=e.

分析 先求出f(0)的值,然后求函數(shù)的導(dǎo)數(shù),令x=1即可得到結(jié)論.

解答 解:∵$f(x)={e^x}-f(0)x+\frac{1}{2}{x^2}$,
∴f(0)=e0=1,
函數(shù)的導(dǎo)數(shù)f′(x)=ex-1+x,
則f′(1)=e-1+1=e,
故答案為:e.

點評 本題主要考查函數(shù)的導(dǎo)數(shù)的計算,根據(jù)函數(shù)的導(dǎo)數(shù)公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)為偶函數(shù),且在[0,+∞)上是增函數(shù),又f(-3)=0,則不等式(x-2)f(x)<0的解集為( 。
A.(-2,3)B.(-3,-2)∪(3,+∞)C.(-3,3)D.(-∞,-3)∪(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知p:?x∈R,mx2+4mx-4<0為真命題.
(1)求實數(shù)m取值的集合M.
(2 ) 設(shè)不等式(x-a)(x+a-2)<0的解集為N,若x∈N是x∈M的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“-3≤m≤0”是“直線mx-y-2m=0與函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{-{x^2}+16},-4≤x≤0\\ 2x-2,x>0\end{array}\right.$的圖象有兩個交點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知2bsin2A=3asinB,且c=2b,則$\frac{a}$等于( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a,b是兩個正實數(shù).且$\frac{1}{{2}^{a}}$•$\frac{1}{{2}^}$=($\frac{1}{{2}^{a}}$)b,則ab有(  )
A.最小值4B.最大值4C.最小值2D.最大值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x3+ax2-3x-1.
(1)當(dāng)a=-4時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)已知g(x)=-3x+1,若f(x)與g(x)的圖象有三個不同交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x,y∈R,滿足4≥y≥4-x,x≤2,則$\frac{{x}^{2}+{y}^{2}+4x-2y+5}{xy-x+2y-2}$的最大值為(  )
A.2B.$\frac{13}{6}$C.$\frac{10}{3}$D.$\frac{17}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求滿足下列條件的直線方程:
(1)求經(jīng)過直線l1:x+3y-3=0和l2:x-y+1=0的交點,且平行于直線2x+y-3=0的直線l的方程;
(2)已知直線l1:2x+y-6=0和點A(1,-1),過點A作直線l與l1相交于點B,且|AB|=5,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案