【題目】已知函數(shù)有極值.

(1)求的取值范圍;

(2)若處取得極值,且當(dāng)時(shí),恒成立,求的取值范圍.

【答案】(1);(2)。

【解析】

(1)由已知中函數(shù)解析式,求出導(dǎo)函數(shù)f′(x)的解析式,然后根據(jù)函數(shù)有極值,方程f′(x)=x2-x+c=0有兩個(gè)實(shí)數(shù)解,構(gòu)造關(guān)于c的不等式,解不等式即可得到c的取值范圍;

(2)若f(x)在x=2處取得極值,則f′(2)=0,求出滿(mǎn)足條件的c值后,可以分析出函數(shù)的單調(diào)性,進(jìn)而分析出當(dāng)x<0時(shí),函數(shù)的最大值,又由當(dāng)x<0時(shí),恒成立,可以構(gòu)造出一個(gè)關(guān)于d的不等式,解不等式即可得到d的取值范圍.

(1)∵,

因?yàn)?/span>有極值,則方程有兩個(gè)相異實(shí)數(shù)解,

從而,

!郼的取值范圍為.

(2)∵處取得極值,

,∴.

,

∴當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減.∴當(dāng)x<0時(shí),在x=-1處取得最大值,

∵x<0時(shí),恒成立,

,即,

,∴d的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前n項(xiàng)和為 , ,數(shù)列滿(mǎn)足: , ,數(shù)列的前n項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(3)記集合,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在空間中,下列命題正確的是( )

A.若平面內(nèi)有無(wú)數(shù)條直線(xiàn)與直線(xiàn)平行,則

B.若平面內(nèi)有無(wú)數(shù)條直線(xiàn)與平面平行,則

C.若平面內(nèi)有無(wú)數(shù)條直線(xiàn)與直線(xiàn)垂直,則

D.若平面內(nèi)有無(wú)數(shù)條直線(xiàn)與平面垂直,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)設(shè),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線(xiàn)在公共點(diǎn)處有相同的切線(xiàn),求點(diǎn)的橫坐標(biāo);

(Ⅲ)設(shè),且曲線(xiàn)總存在公切線(xiàn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)高三年級(jí)進(jìn)行身高統(tǒng)計(jì),測(cè)量隨機(jī)抽取的20名學(xué)生的身高,其頻率分布直方圖如下(單位:cm

1)根據(jù)頻率分布直方圖,求出這20名學(xué)生身高中位數(shù)的估計(jì)值和平均數(shù)的估計(jì)值.

2)在身高為140—160的學(xué)生中任選2個(gè),求至少有一人的身高在150—160之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門(mén)調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫(huà)出如圖所示的頻率分布直方圖:

(Ⅰ)求的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),再將所得的圖象向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象.

1)寫(xiě)出函數(shù)的解析式;

2)若對(duì)任意 , 恒成立,求實(shí)數(shù)的取值范圍;

3)求實(shí)數(shù)和正整數(shù),使得上恰有個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)C的焦點(diǎn)為F,直線(xiàn)l過(guò)點(diǎn),交拋物線(xiàn)于A、B兩點(diǎn).

1)若P中點(diǎn),求l的方程;

2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)結(jié)論中,錯(cuò)誤的序號(hào)是___________.①以直角坐標(biāo)系中軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C的方程為,若曲線(xiàn)C上總存在兩個(gè)點(diǎn)到原點(diǎn)的距離為,則實(shí)數(shù)的取值范圍是;②在殘差圖中,殘差點(diǎn)比較均勻地落在水平帶狀區(qū)域中,說(shuō)明選用的模型比較合適,這樣的帶狀區(qū)域?qū)挾仍綄挘f(shuō)明模型擬合精度越高;③設(shè)隨機(jī)變量,若,則;④已知為滿(mǎn)足能被9整除的正數(shù)的最小值,則的展開(kāi)式中,系數(shù)最大的項(xiàng)為第6項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案