若函數(shù)f(x)=sin(ωx+φ)的圖象(部分)如圖所示,則ω和φ的可能值是( 。
分析:
1
4
T=π可求得ω,
3
ω+φ=
π
2
+2kπ(k∈Z)可求φ.
解答:解:由圖知,由
1
4
T=
3
-(-
π
3
)=π,
∴T=
ω
=4π,
∴ω=
1
2
,可排除A,B;
3
×
1
2
+φ=
π
2
+2kπ(k∈Z),
∴φ=
π
6
+2kπ(k∈Z),
當(dāng)k=0時(shí),φ=
π
6

故ω和φ的可能值是ω=
1
2
,φ=
π
6
,
故選C.
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的圖形求其解析式,考查識(shí)圖分析與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(3x+φ)的圖象關(guān)于直線x=
3
對(duì)稱,則φ的最小正值等于( 。
A、
π
8
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(x+?)是偶函數(shù),則?可取的一個(gè)值為                  ( 。
A、?=-π
B、?=-
π
2
C、?=-
π
4
D、?=-
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題:
①函數(shù)f(x)=sin(
π
3
-2x)的一個(gè)增區(qū)間是[
12
,
11π
12
];
②若函數(shù)f(x)=sin(ωx+φ)為奇函數(shù),則φ為π的整數(shù)倍;
③對(duì)于函數(shù)f(x)=tan(2x+
π
3
),若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
④函數(shù)y=2sin(2x+
π
3
)的圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱.
其中正確的命題是
 
.(填上正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+φ)(|φ|<
π
2
)的圖象(部分)如圖所示,則f(x)的解析式是
f(x)=sin(
1
2
x+
π
6
f(x)=sin(
1
2
x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+
π
4
)的圖象的相鄰兩條對(duì)稱軸之間的距離等于
π
3
,則ω=
±3
±3

查看答案和解析>>

同步練習(xí)冊(cè)答案